Interactive Media Retrieval in Mobile Communication

Robert van Kommer
Abstract

http://diuf.unifr.ch/diva/3emeCycle07/

- All-in-one mobile phones have changed our social communication behaviors and infotainment habits. For people on the move, accessing media content represents new challenges and different use cases: on the one hand, mobile phones' display and keyboard are much smaller than those on regular PCs; however, on the other hand, these devices are always on, personalized and carried around.

- In this context, the following topics are addressed: how to enhance user's access by cross-media indexing and, furthermore, how could the search/retrieval performance be improved with a "human in the loop" personalization algorithm? Both topics will be illustrated through an interactive media application tailored towards mobile user experience.
Presentation outline

- Context: horizontal approach in communication
- To enrich multimedia content
- Human-in-the-loop retrieval algorithms
- The multimodal stack widget and it’s demo
Vision: the horizontal approach

- End-device UI convergence
- Service convergence
- Network convergence

QoS, security, billing and service personalization

- Entertainment
- Communication
- Services Industry
- Health care
- Others

- NFC & RFID
- Personnal
- Local
- Public

Customer
User-centric innovation guidance

- Users stay in the center of innovation and its adoption
- Users need unified, natural service interfaces that are easy to use everyday, everywhere
 - Multimodal and personalized communication
 - Intelligent services to ease the access and to improve service and security
Horizontal approach in media distribution channels

- The media barriers are disappearing
- Web and IP communication enable a “media agnostic” approach
- What it offers:
 - Unparalleled user experience and interactivity
To Enrich Multimedia Content
Vision: to enrich content for boosting retrieval capabilities

- **The easy way:** For new content, the horizontal approach suggests to include all valuable “parallel” data at the start.

- **The hard way:** For existing content, most operations have to be processed by automatic tools.
Examples of parallel data with strong/weak synchronizations

- (strong) Written media and its recordings or Text-to-Speech rendering (Bilanz demo example)
- Audio books (Harry Potter)
- TV Broadcasts and teletxt information
- Radio and speech recognition (www.audioclipping.de)
- Movies with subtitles (Most DVDs)
- Spoken presentations and their slides
- (weak) Audio, Video, Web content (Background information is used e.g. for language modeling)

- SMIL indexing information
Text processing steps...

- Natural language processing
 - Text normalization in German
 - UBS → as it is spoken
 - 1. → as it is spoken (erste, ersten,…)
 - 0800 800 800 or 026 400 03 70
 - Language identification (“Guisanplatz”)
 - Text-to-phonetic translation
 - Sentences splitting
 - Text structures identification for automatic SMIL indexing
Acoustic processing step...

- Creating a new speech recognition model of the speaker (in the general case one would use speaker adaptation)

- Forced-alignment of both text and acoustic representations by using a speech recognizer
 - Depending on the media to be processed: Multimodal processing will be necessary to extract every piece of needed information
Sent1: Die Schweizer Wirtschaft wächst um eins Komma fünf Prozent
Sent2: Alle reden von der Wachstumsschwäche, aber niemand weiß, wie man diese misst.
Sent3: Wie schlecht steht die Schweiz tatsächlich da?
Sent4: Von Markus Schneider
Improved content retrieval

- Rich content is:
 - A text representation and a synchronized audio/video representation
 - Creating cross-media indexing tags
 - Surfing audio/video with text input
 - Surfing text via speech input
Advanced retrieval and navigation

- Web surfing of multimedia content
 - Retrieval of topics at the sentence level
 - Navigation at the sentence level
 - E.g. Move to the next sentence
 - Retrieve a sentence where …

- Navigation improvement
 - Introduce audio hyperlinks within video by a localized voice conversion of the original speaker’s voice
Human-in-the-loop retrieval algorithms
Vision: Create one meta-user model instead of meta-data models

- The goal is to model the individual user and not data (horizontal approach → to be independent of data)
- Boosting the learning efficiency in order to reduce the number of user’s interactions (clicks) and making the process as transparent as possible to the user
- Now, given that meta-user model, we can add intelligence to service interaction we could even make the service proactive.
Review: human-in-the-loop algorithms

- Post-rating/ranking of traditional keyword search engines
- Inductive learning (SVM http://svmlight.joachims.org/)
- Transductive learning (http://svmlight.joachims.org/)
- Active learning
- Online learning
- Ranking learning
- Reinforcement learning

The bottom line: How many clicks are needed? Ultimately, no clicks are needed when the service could proactively anticipate user’s needs.
Simulation context and results
http://www.daviddlewis.com/resources/testcollections/reuters21578/

- The task is to learn which Reuters articles are about "corporate acquisitions".
- In the training set, there are 1000 positive and 1000 negative examples.
- The test set contains 600 test samples (300 positive and 300 negative samples).
Support Vector Machine (SVM)
Inductive learning
The number of user’s inputs needed

Text classification of Reuters articles: "corporate acquisitions"

Correct classification

Number of positive and negative samples
TSVM transductive SVM
The number of user’s inputs needed

Transductive text classification of Reuters articles: "corporate acquisitions"

Correct classification

Number of positive and negative labelled training articles out of 2000 that are used in the transductive SVM

20
Active learning

- **Pool-based** (e.g. Tong and Koller)
 - Each learning candidate is selected out of a pool of unlabelled samples; the most critical sample is chosen first, to speed up the training and to reduce human interaction
 - However, data must be available before

- **Stream-based** (e.g. D. Sculley)
 - On each incoming sample, the algorithm could request human interaction to update the classifier
 - Data is not available before (e.g. incoming e-mails)
Online learning

- Speed up the learning
 - From the neural network learning paradigm: online learning versus batch-mode learning
 - In our context: The purpose is to learn as fast as possible by using every available sample as soon as possible

- Computation efficiency
 - To reduce the learning time for large training streams
Improve ranking of results

- To improve the ranking of retrieved results
 - Given a certain number of queries
 - Given a certain number of selections (re-ranking)
 - Given a set of extracted text features
 - The algorithm learns a better ranking

- See STRIVER http://svmlight.joachims.org/
Demo: Multimodal Stack Widget
Vision: a “media agnostic” approach

- Motivation: To make surfing and retrieval of any multimedia content as easy on mobile devices (or easier) than on PCs.

- The hard challenge: To cope with the limitations of mobile devices e.g. a small screen and a tiny keyboard.
Börse Kein Platz für Bären.

Die Strategen der grossen Bankhäuser versprechen allesamt steigende Aktienkurse. Ein Warnsignal? __ So einig waren sich die Börsenauguren schon lange nicht mehr: 2007 wird für Aktienanleger ausgesprochen positiv... […]
Bringing all pieces together...

- Integration of parallel data streams
- Integration of intelligence by using human-in-the-loop algorithms
- Integration of a voice search (speech recognition)

Finally, integration of all interactions into the concept of the multimodal stack widget
Speech recognition integration

- All-IP server technology from the university of Fribourg
 - With a push-to-talk on mobile phones input
 - Standard open source products
 - Apache, Tomcat and Sphinx 4

http://diuflx77-vm04.unifr.ch:8080/diva-webwriteit
Multimodal stack widget

Human-in-the-loop learning result (Recommendation)

Multimodal input

keyword search results output
Voice search

Multimodal search

N-Best speech recognition results

keyword search results
Multimodal stack widget

[BILANZ]

Search
Search by voice

[Das Schweizer Wirtschaft]

Herr der Klötzchen
Klotz am Arm
Genf steht im Millionen...
Die Uhren, die verkeh...
Worthülsenfrüchte

Options
Back
Further potential improvement

- Multimodal auto-completion
- Incremental and personalization of the voice search indexing
- Adding audio hyperlinks
- Enabling sentence-based audio navigation

Starting the UI design

- Applying the user-centric design process
- Running the necessary usability tests
Conclusion messages

I have presented a horizontal approach to enhance multimedia retrieval through an example of an intelligent service.

Thank you for listening!
Voice search at Swisscom