NI
R UMIVERSITE DE FRIBOURG
UMNIVERSITAT FREIEURG

MASTER N
COMPUTER
SCIENCE

Multimodal interfaces, spring 2014

Multimodaaaaa

A multimodal experience of the AaaaaAAaaaAAAaaAAAAaAAAAA game

Didier Aeberhard Pascal Gremaud Ismail Senhaiji
didier.aeberhard@unifr.ch pascal.gremaud@unifr.ch ismail.senhaji@unifr.ch

May 22th, 2014

Teacher:
Dennis Lalanne

Introduction

In the past few years, a revolution appeared in the game industry. New devices entered the
market to improve the immersion of the player in the game. Nintendo was the first company to
develop a glove to interact with a game. The Power Glove was able to detect the movement of
the hand. Despite its commercial failure, the Power Glove opened the road to a brand new
dimension in gaming experience. The Multimodal Interfaces class introduced us to the possible
use of multiple inputs channels to perform a given task. This project relies on the ability to play a
game in the most possible immersive way, using multiple modalities.

Project Description

The goal of this project is to create a multimodal system in order to enhance the experience of
an existing game. In order to be multimodal, the system should contains inputs from different
sources.

Original Game: AaaaaAAaaaAAAaaAAAAaAAAAA

The game on which we based ourselves was developed in 2009 by Dejobaan Games Studios. It
is a first person view game where one must control a free fall after having jumped from a
building. The aim is to collect a maximum amount of points. The game session ends when the
player hits the ground after having opened a parachute. Game points can be gained by several
means, such as flying near buildings or greeting a virtual friendly or unfriendly crowd standing on
certain platforms with the correct gesture. We chose this game because of its high immersive
power, and because it already provides oculus rift support.

Figure 1: A view of the gameplay offered by the original game. The player is facing the ground
and can move between obstacles.

Game Controls

The original game controls are:
The view is controlled either by the mouse or by a gamepad joystick.
The movements are controlled either by the keyboard or by a second joystick if using a
gamepad.
e Several actions are controlled either by the keyboard or by gamepad buttons:
friendly gesture to crowd
o unfriendly gesture to cowd
o spraying tags on buildings
o parachute opening

o

Multimodal inputs

Oculus Rift

The Oculus Rift is a head mounted virtual reality device that provides 3D vision. It manages head
movements with accelerometers, gyroscopes and magnetometers in order to provide a fluent

reconstruction of the head movements. In our project, the Oculus is used as is, to increase to

immersion of the player. As the game already supports the Oculus, the view is controlled directly
by the device. The player simply needs to wear it during the entire game session.

Figure 2: The Oculus Rift.

Custom Power Glove

Our goal was to achieve a high correspondence between the game and the reality. Hence we
decided to create a device that allows the player to do real hand gestures that will be transferred
into the game.

We used the same flexion sensors that were used in the Nintendo Power Glove'. Four of those
sensors were sewn to a sport glove and connected to an Arduino Pro Micro® board. We did
some solder work in order to fix the board to the glove and to link the corresponding pins to the
sensors. The board communicates with the computer by serial communication through a usb

cable that also powers the glove. A request sent from the computer activates the sensors

' KW HQZINSHADRUJ ZIN.3RZHB* ®YH
2 KWBV ZZZ VSDINXQFRP SURGXFW

actualization, and the value of each finger is transferred back to the computer. These values
indicate the degree of flexion of each finger. A calibration step is needed to that the system
knows the possible minimum and maximal value for each finger, which depends on the current
player. There are then translated into a list of possible hand gestures.

Figure 3: The custom Power Glove, with the arduino controller in red.

Kinect
The Kinect is a motion sensor developed by Microsoft for their Xbox. It is able to detect the

movement of a body using the integrated camera and a IR depth camera. The movement of the
player is used to act as a joystick. The gamer is laid on a table and the Kinect is placed above
him to recognize his motion. By moving his arms horizontally/vertically, the gamer interacts with
the game as a joystick movement, enhancing the immersion. The Figure 4 shows the mounting

gamer/kinect.

Figure 4: the game setup. The player is laying on tables with enough space to move his head
comfortably. The Kinect is fixed above him, facing downwards.

System Management and Inputs Fusion

This section discusses the programming aspect of our project. It describes the different tools
used, the modules created and the functioning of the main program controlling the modules.

Language and Libraries

We decided to use Python under a Linux distribution, since linux offers the easiest way to create
a virtual joystick, which is used to fuse the inputs. we used several libraries in order to receive
the different inputs. The PySerial library allows serial communication between our program and
the arduino board. Freenect is a library that allows simple access to the depth and color images
sent by the Kinect. Finally, Linux Virtual Joystick can create a joystick emulator that can then be
used to control the video game.

Figure 5: the communication channels between the player (on the left) and the game (on the
right).

Modules

We created different modules to manage the inputs and outputs of the system. Those modules
communicate with a main program that calls module functions when needed.

Module: Glove

This module is responsible for the communication with the glove. When the finger values must
be accessed, a specific function is used. This function sends a message to tell the arduino
board to transmit the finger values. This two ways communication is needed so that the arduino
module is not overwhelmed with useless values that must be removed from the serial buffer

before being able to get the latest values. The values returned by this function must be mapped
to a possible range of values, that are determined during the calibration process. A calibration
function is called twice by pressing a keyboard key, once with the hand opened and once closed.
the minimal and maximal finger bending values being set, a list of four boolean values can be
calculated. An element of the list is True if the flexion value of the corresponding finger is less
than the middle of the possible values. Those list of boolean values are then referred to by using
a dictionary. Figure 6 shows the different recognized gestures and their high level
representation, the dictionary index. These representations are returned by the function that
communicates with the main program.

Figure 6: the six recognized hand gestures and their given name. Note that
the “YEAH” gesture can be done in two different manners.

Module: Kinect

This module manages the kinect inputs and is responsible for the body capture calibration. We

used only the depth image of the kinect. The main aim of this module is to translate this image
into two values between -1 and 1, representing the x-axis, respectively y-axis position of the body
with respect to a reference point. The first steps needed to use this module are several

calibration phases, all controlled by the main program by the mean of keyboard inputs. It is firstly
possible to adjust the maximum depth of the Kinect, so that all the depth values bigger than a
defined threshold are ignored. This allows the Kinect to detect only the body of the player,
reducing the noise in the image. The first body calibration is done by asking the player to move
his arms during several seconds, so that all the non moving body parts can be removed. This

works by creating a mask covering those areas, leaving the arms as the only visible parts. The

reference point can then be calculated, by extracting the centroid of the new image. A last
calibration step consists of the player moving his arms again, this time trying to reach each

possible direction. During this phase, the extrema values of each direction are saved. The arms

movements are then mapped for both directions -horizontal and vertical- to a range between -1

and 1, the values situated at the extrema points.

Module: Joystick

The last module created is a joystick emulator. It is used to transmit the result of the input fusion
into the game. Two kinds of inputs are passed to it: the arms position captured by the Kinect,
and the actions generated by the glove when a certain gesture is done. The arms position is
passed in the form of a tuple of values that correspond to the x-axis and y-axis of a joystick. The
virtual joystick simply forwards this input into the game. The module also forwards glove inputs
as well as combinations of glove and Kinect inputs (as explained later) by emitting a virtual
button event.

State Machine

We created a state machine in Python in order to manage the inputs and outputs. The transition
between states is done based on certain conditions, as shown in figure 7.

Figure 7: The four different states and their transition rules.

State: Neutral

This is the initial state of the machine. When the stated is entered, the three modules are
initiated. A person is then needed to help the player during the calibration process. His role is to
press keyboard keys to calibrate both the Kinect and the glove modules. A certain key is used to
exit this state, however all the calibration steps must be completed before leaving the state.

State: Waiting

The only purpose of this state is to allow the game program to be launched. the fingers position
is constantly analyzed, the state is left once the player closes the hand completely, meaning that
he is ready to start the game.

State: Walking

As the game begins on top of a building, the player must first walk until he jumps off the roof of
the building. When this state is entered, the joystick module outputs a button event that
corresponds to the “forward” command in the game. This button remains pressed as long as the

player keeps his hand closed. He can change his direction simply by moving the head, the
oculus translating his head movements directly into the game. Once the player has jumped from
the building, he opens his hand, and the next state is entered.

State: Playing

When this state is entered, the full multimodal control of the game starts. At each iteration of the

program, both the inputs from the glove and from the Kinect are fetched. The Kinect module

returns a tuple of values between -1 and 1, that are translated into joystick inputs into the game.
These corresponds the player movements in the game, they allow the player to move between

the obstacles. The glove values also possibly trigger some actions. If a hand gesture of the type
“YEAH” or “F**K” are detected, the corresponding button is activated using the virtual joystick.
The “GRAF” finger position must be followed by the “FIST” position to activate the graffiti button,
which would correspond to the natural graffiti gesture.

The last gesture, “PARA”, corresponds to the parachute opening, which happens when the

player reaches the end of the level. However, the joystick only activates the corresponding button
if both the glove and the Kinect suggest that the player wants to open his parachute. The player
opens his parachute by first putting his hand in his back, then closing it, and pulling it out of his
back, exactly like a normal parachutist would open his parachute. In order to verify that the player
performed this complex action, the main program constantly feeds the finger positions to the

Kinect module. This module has a parachute variable, originally set to “closed”. If the current
gesture corresponds to “FIST” and the hand is situated in the back of the player, the variable
changes to “opening”. In order to choose whether the player puts his right arm in his back, the
Kinect module calculate the area of the right arm on the image. If its value is less than a certain

percentage of the value calculated during the calibration process, it is considered as being in the
back of the player, because the back is hidden by the calibration mask. The final action needed
to open the parachute is pulling the arm from the back, while still keeping the hand closed. If the
kinect detects that the arm area is sufficient and that the hand is still closed, it sets the

parachute variable to “opened” and sends a signal to the main program. The main program then
passes the information to the joystick module, which activates the parachute button. Finally, the
Neutral state is entered, thus ending the Kinect and glove control over the game. As all the
modules are already calibrated, the player can simply enter a new game session.

CASE / CARE Positionnement

In this section, we briefly explain the position of our game according to the CASE and CARE
models.

CASE Model

e Concurrent: The oculus, kinect and glove inputs are treated in parallel, and are mostly
independent.

e Synergistic: The action required to open the parachute is a combination of the glove and
kinect inputs, both treated at the same time.

e Exclusive: In order to activate full game control, the player must first perform a specific
gesture using the glove.

CARE Model

e Complementarity: As for the CASE model, the opening of the parachute is done by using
both the glove and kinect inputs at the same time.

e Assignment: Most gestures are done using a single finger combination. Also, body
movements are only made possible by using the Kinect inputs.

e Equivalence: Some actions can be done using different inputs. The head movements are
done either using the Oculus or the Kinect inputs. The friendly gesture can be done using
two possible finger combinations, although they both come from the same input, i.e. the
glove.

User Evaluation

In order to evaluate our project, we did some testing, using 10 participants. We wanted to
compare the player performance and satisfaction level when playing either with our complete
multimodal setup or simply by using a gamepad in front of a computer screen. We measured

the performance by looking at the game scores at the end of a level. It appears that the
performance in the game dropped when using our setup, mainly because the controls are far
more sensitive, and the player does not have a direct indication of his current direction in the
game. However, they all enjoyed the multimodal experience, a majority saying that the complete
immersion was more interesting than playing the game classically. They also noted that playing
the game while laying on a table and moving the arms was both uncomfortable and exhausting.

Work Distribution

Our different group members were assigned different parts of the project. Didier Aeberhard was
responsible for the custom power glove, including soldering and sewing work, as well as the
arduino programming and the glove module. Ismail Senhaji created the Kinect and the joystick
modules. Pascal Gremaud created the main program, including the state machine.

Conclusion

Our goal at the beginning of the project was to create a very immersive, multimodal version of a
known game. In order to do so, we managed to create a new physical interface, several modules
and a state machine. Although the evaluation revealed that our game version did absolutely not
increase the performance of the players, it showed that they could still benefit from this

immersion. Some improvements could be added to the game in order to increase the
performance of the player, such as a feed back of the direction of the player in the game, which
is difficult to evaluate.

