RFID Middleware: Ensuring Qualities of Service for the Internet of Objects

Olivier Liechti
Sun Microsystems, Inc.
Dominique Guinard
University of Fribourg
Agenda

• Vision
• RFID Deployment Challenges
• RFID Middleware
 > Requirements & features
 > Architecture
 > Current trends
• Sample application: RFIDLocator
Vision: the Aware Enterprise

What am I?
Identity

Where am I?
Location & Environment

How am I doing?
Status

Real-Time Data

Real-Time Visibility into any asset anywhere

RFID

Higher Levels of Business Productivity

Real-Time Business

Global Internet Connectivity

Sensors

Wireless Technologies
Deploying RFID Poses Challenges...

• Physics
 > What Tags, What Readers?
 > Regulations, Standards etc.

• Infrastructure Issues
 > Data Management
 > Connectivity Issues
 > Remote Management
 > Security and Access Control

• Integration Issues

• Leveraging the Data (Business Intelligence)
How much RFID Data will We See?

or
RFID Middleware Functionality

1. Data smoothing and validation
2. Integration of data across multiple sensors
3. Information lookup in internal or external databases,
4. Data buffering and aggregation over time
5. System Management performance and health

RFID Readers & Sensors

RFID / Sensor Middleware

Business Application

Functionality Provided
RFID Middleware Architecture

Core

Global Network

Service Edge

Devices

Things

Java™ Enterprise System

... Msg. Dir. App Web

... Legacy SMPs NBCs

Data Center Network

Storage

Existing Enterprise Information Systems e.g. WMS, ERP

Solaris™ OS Linux

SPARC™ X86/AMD64

Java System RFID Event Manager

Java Identity

J2ME Tag Reader

Java Card™

RFID Tags

Tags
Sun Java System RFID Software

SJS RFID Event Manager
- Purpose: Event Data Collector
- Supports EPC Gen 2, ISO, other tags (Active/Passive) and sensors
- Self-healing, fault tolerant, automatic
- Central Monitoring console, Remotely Administrable (JMX, SNMP)
- Java based (API for extension)

SJS RFID Information Server
- Purpose: Store and Retrieve Item Information and Track & Trace
- J2EE based Java Enterprise System
- RDBMS (Oracle)
- Extensible schema
- Client Interfaces: XML/Http, JMS, RMI (Java Client Library provided)
Sun's Sensor Middleware Technology

- **RIO** - a dynamic adaptive network architecture built using Jini technology mechanisms

- **Key Constructs include**
 - Dynamic Provisioning
 - Policy-based and Quality of Service (QoS) mechanisms
 - Jini Service Beans
 - Event Dispatch and Discovery
 - Peer-to-Peer Event Model
 - Federation
Basic Readers

- No intelligence besides reading and forwarding data
- Little or no filtering of data
- Floods the network with data
- Cheap, Single protocol/frequency

Tagged Assets -> Readers -> RFID Middleware

RFID Middleware

- Rely on middleware to do bulk of filtering
- RFID Middleware could become point of failure; need robust middleware

“..Pallet xyz arrived at dock door 4..”

Applications
Smart Readers

An event you are interested in has occurred

- Built-in low-level filtering
- Dynamic config and updates
- Reduces network traffic by sending only relevant data
- Multiple protocol/Frequency

Central Management Server

- Smart Reader Management and Provisioning
- Firmware/Business logic upgrades
- Reader Coordination
- High-Level Filtering/Aggregation

Applications
Reader Management
ALE stands for Application Level Events

ALE is a SW specification for the filtering and collection of RFID data being defined and ratified by EPCglobal

ALE enables the aggregation and translation of individual reader events into events meaningful to applications
Why ALE is Important?

An Application-centric approach on incorporate RFID data is not scalable

What if you need a new application to access data from your existing readers?

ALE-based middleware enables a more scalable approach to integrating RFID

In this example, with the same set of readers

- **Application 1** can request RFID reads only when an object enters or leaves a door
- **Application 2** can request RFID reads every 10 seconds for inventory tracking
- **Application 3** can request all RFID reads whenever they happen
RFID as a SOA Service

BPEL

Rules Engine

WS-I

xForm

EDI

Components:
- BPEL
- xForm
- Rules

Integration Points:
- Admin
- Identity
- Access

Message Bus:
- Normalized Message Bus
- Bindings

Services:
- Rules Engine
- BPEL

Connections:
- Incoming ALE Events
 - RFID Readers & Middleware
- Business Partners
 - Applications and Data
 - Enterprise Systems
Example: RFIDLocator

- **Goal:**
 > track assets within a predefined area (e.g. a building)
 > put RFID tags on physical objects & deploy readers
 > offer a user interface to query the location of assets

- **Example 1 - the Data Center:**
 > One RFID transponder on each hardware asset
 > Fixed RFID readers at the entrance of the server room

- **Example 2 - the Hospital:**
 > One RFID transponder on each medical file
 > Mixed use of fixed and handheld readers
System architecture

RFIDLocator is a J2EE application deployed in Sun Java System Application Server.

- Philips Rafsec (EPC Tag)
- L100 Antenna
- Medio L100 Reader
- Moxa
- Event Manager (on Sun Ultrasparc)
- Application Server
- RFIDLocator
- JMS Bridge
- Laptop (Thin Client)
- Net.
- TCP/IP

Tags
- EPC Philips RAFSEC

RFID Reader
- Medio L100

Converter
- Moxa Nport Express
Object model

- **Reader**: models an RFID reader (aka Sensor).
- **PhysicalAntenna**: a hardware component able to capture RFID events.
- **LogicalAntenna**: Groups 1..n PhysicalAntennae.
- **LocatorObservation** and **BufferedObservation**: results of an RFID event.
- **TraceableObject**: models assets equipped of an RFID tag and traced by the application.
- **Location**: a “place” within the area controlled by the RFIDLocator.
- **Action**: action assigned to the RFID events: either IN or OUT of the Location.
Example

- One RFID reader incapable of detecting the motion direction.
- Two PhysicalAntennae: one reports IN observations, the other OUT observations.
- One LogicalAntenna aggregating both PhysicalAntennae.
- The LogicalAntenna reports LocatorObservations attached to either IN or OUT actions for “room RM.3-113”.
- This decision relies on the Solver (algorithm) of the LogicalAntenna.
Summary

- Do not ignore physics testing
- Push RFID/Sensor data processing to the edge
- Don’t assume the Network will always be available
- Plan for remote management; IT support will not always be available
- Pay attention to a Reliable and Scalable architecture that can accommodate RFID and Sensor data
- RFIDLocator's website: www.gmipsoft.com/RFID