
Tools for Designing and Prototyping Activity-based
Pervasive Applications

Pascal Bruegger, Denis Lalanne, Agnes Lisowska, Béat Hirsbrunner
Department of Informatics

University of Fribourg
Fribourg, Switzerland

{first.lastname}@unifr.ch

ABSTRACT
This paper proposes a new approach for modelling, testing
and prototyping pervasive, possibly mobile, and distributed
applications. It describes a set of tools aimed at supporting
designers in the conceptualisation of their application and
in the software development stage, and proposes a method
for checking the validity of their design. The article also
presents a pervasive application implemented and evaluated
using our approach. It concludes with propositions for im-
provements in order to build a complete modelling, proto-
typing and testing framework for pervasive applications.

Categories and Subject Descriptors
H.4 [H5.2]: D.2.8

General Terms
Pervasive computing

Keywords
Mobile computing, Pervasive Computing, Activity-based com-
puting, User Centered Design

1. INTRODUCTION
For some years already, research in the domain of pervasive
computing systems and mobile computing has focused on
concepts and frameworks for the development of end-user
applications that take into consideration the user’s context
and location to do the right thing at the right time. Two
important difficulties during the design and development of
such applications, distributed by nature, are the integration
of a variety of heterogenous technologies (e.g. mobile phone,
PDA, back-end server, communication protocols) and test-
ing the validity of the technological choices.

There has been much discussion about the use of prototypes
of pervasive applications in order to elicit user requirements
from potential end-users to help feed the design or to evalu-
ate options for the front-end of the application that the user

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MoMM2009, December 14–16, 2009, Kuala Lumpur, Malaysia.
Copyright 2009 ACM 978-1-60558-659-5/09/0012...$10.00.

will actually be interacting with [1, 6, 10, 16]. In order to
support this type of requirements elicitation and evaluation,
toolkits such as [2, 14] exist to encourage rapid prototyping.
But, these toolkits are often too restrictive, either in the
types of applications that they can be used to create, or in
the flexibility of adding and modifying code. Consequently,
difficulties might be encountered when trying to transfer the
initial prototypes that they produce to more concrete and
finalized products.

We have noticed that there is a lack of tools, guidelines
and methods to help designers in the definition, validation,
prototyping and development of their design choices in a
holistic manner, where all of the steps can be done within
the same framework and using a cohesive set of tools. In
this paper, we propose a new approach for designing and
implementing pervasive applications that aims to fill this
gap.

In our approach, shown in Figure 1, the KUI model and its
respective uMove conceptual framework enables designers to
specify the architecture and content of their pervasive sys-
tem. The IWaT methodology is then used to test the overall
functional design of the system (e.g. behavior of the system,
message passing between modules) in order to validate the
design. Finally, the uMove API enables rapid-prototying at
a fairly high level of fidelity and the eventual full-scale imple-
mentation of the system by directly transferring the design
specification made using the uMove conceptual framework.
It is important to note that the design lifecycle proposed
in our approach supports the functional specification of the
system and should carefully complement a regular user cen-
tered design approach to elicit user requirements (before-
hand) and to evaluate the design from end-user perspective
once a prototype is available.

Figure 1: Project development phases and tools

In the rest of this paper, we will focus on describing the KUI
semantic model (section 2), the uMove conceptual model

(section 3) and the iWaT validation method (section 4), and
will only briefly discuss the uMove API (section 3). A case
study applying our approach is described in section 5 and
conclusions are drawn in section 6.

2. THE SEMANTIC MODEL: KUI
The concept of the Kinetic User Interface (KUI) [4] is a
way of grouping Weiser’s Ubiquitous Computing vision [19]
and Dourish’s Embodied Interaction vision [9]. In the early
’90s, Marc Weiser predicted that computers would disap-
pear and computing power would fade inside the network
infrastructure. Paul Dourish investigated how to move the
interface “off the screen” and into the real world. In his
model, users can interact with physical objects which have
become augmented with computational abilities. KUI-based
systems are intended to enable the merging of these two vi-
sions, where the motions of users or objects in physical space
are recognised and processed as meaningful events. The KUI
model is a conceptual framework helping in the design of per-
vasive systems including mobile applications or server-based
systems integrating user’s locations and activities.

2.1 A systemic approach
The KUI model is based on General System Theory (GST).
GST defined by von Bertalanffy [18] gives the framework and
the concepts to model specific systems studied in sciences
such as biology or chemistry. We consider that any user or
object moving in their environment is part of a system made
up of different components such as buildings, rooms, streets,
objects and other users. For Alain Bouvier ([3], p.18), a sys-
tem (a complex organised unit) is a set of elements or entities
in dynamic interaction, organised to reach a certain goal and
differentiated within its environment. It has an identity and
represents a“finalised whole”. Each of these entities exhibits
“behaviour”, action or change, and this behaviour is consid-
ered to be related in some way to the environment of the
entities, that is, with other entities with which it comes into
contact or into some relationship. The important points are
that 1) the entity’s actions (activities, behaviour) are related
to their environment and that 2) entities form relationships
with one another. In the KUI model, systems are open and
dynamic. Their complexity evolves over time with respect
to their components. Components can join and leave sys-
tems, increasing or reducing their size. We have included
two concepts which are not present in the definitions above:
the observer (who/what is observing the system) and the
view (the observer’s point of view).

We define a system as a set of observable, interacting and
interdependent objects, physical or virtual, forming an inte-
grated whole. The system includes different types of objects:
entities, observers, and views (Fig. 2).

Figure 2: System diagram

This model offers a simple way for pervasive computing sys-
tem designers to describe their system, which is made up
of components, objects and rules that once defined will be
programmed. We will now define the objects from which the
system is composed.

2.2 Entities
Entities are the observable elements of the system. They
can be physical or virtual, living things (users, humans or
animals), moving objects (cars or planes) or places (rooms,
floors or buildings). An entity is made of contexts and does
activities.

2.2.1 Contexts
A. Dey et al. in [8] define a context as any information
that can be used to characterise the situation of an entity.
Context includes location, identity, activity and time. In
our model, contexts are used to define the attributes of an
entity. Contexts do not include the activity. The activity is
influenced by the environment and therefore by the contexts
in which it is done. We will see later that contexts provide
relevant information to the observer in the situation analysis.
We mainly use the following contexts in our model:

• Identity. It allows to uniquely identify the entity within
the system.

• Location. It gives the physical and logical position of
the entity.

• Role. Entities have 2 roles: Actor (e.g. human, robot,
object) or Place (e.g. rooms, house, boat). An actor
is said to be atomic and cannot contain other entities.
A place is said to be complex because it can contain
other entities (actors or places).

• Status. An entity has two possible statuses: mobile
(motion capabilities) or static (fixed).

• Structure. It defines the contained entities.

• Relations. Two types of relations between entities:
spatio-temporal relations (physical connections between
entities like “inside” or “next to”) and interactional re-
lations between actors (needed to carry out complex
activities).

Other contexts can be defined for an entity and would de-
pend on the characteristics of the system. For instance,
temperature or light intensity can be useful contexts for ob-
servers.

2.2.2 Activities in places
Activities are controlled within a place. Places have rules
that determine the authorised, forbidden and negotiable ac-
tivities. We introduce the concept of activity lists. White-
listed activities are the authorised activities within a place.
Black-listed activities are, on the contrary, forbidden and
provoke an immediate reaction from the observer. We also
take into consideration what we call the “grey” list. If an
activity is not explicitly declared in the white or black lists
then it is “negotiable” and gives the freedom to evaluate it

and make an inference from the situation. Activity lists al-
low the observer to quickly react when something is going
on in a place.

2.3 Observers and views
The second part of the system consists of observing the enti-
ties. Observers are the agents which collect and analyse in-
formation (activities and contexts) about actors and places
and possibly react to particular situations. Observers have
specific roles and analyse one or a small number of situa-
tions. To illustrate this concept, let us take the example of a
family house where several rooms (kitchen, living room, bed-
rooms) afford different activities. Observers shall be placed
in each room in order to evaluate situations taking place
in them, taking into consideration the actor’s activity and
context.

2.3.1 Non-intrusive behaviour of observers
Weiser, in [20], introduced the concept of calm technology.
In his concept, the user is increasingly surrounded by com-
puting devices and sensors. It becomes necessary to limit
the direct interaction with computing systems in order to
avoid an unneeded cognitive load and let the user concen-
trate on their main activity. Our concept of observer is
inspired by Weiser’s idea. There is no interference with ac-
tors and places: the observer only reports situations to the
higher level and lets the application decide what to do.

2.3.2 Views
The entities are observed from certain points of view. Ob-
servers can select different points of view to analyse the same
situation. Each point of view represents a focus on the sit-
uation. Many observers can use similar views for a differ-
ent situation analysis. A view is a multi-dimensional filter
placed between an observer and the entities. We have 2
dimensions in our model of view: range and level.

Figure 3: Concept of view in KUI: Range and Level
parameters

As shown in Figure 3, the range is a parameter that influ-
ences the scope of the observation (e.g. the ocean or only
a cruise boat) and the level is the parameter which gives
the granularity of the observation (e.g. decks or decks and
cabins or passengers).

2.4 An activity-based model for situation aware-
ness

We now define how the kinetic information from the dif-
ferent entities is processed and how a situation is derived
from a simple motion. Context-aware systems often take
into consideration the user’s external parameters such as lo-
cation, time, social information and activity to characterise
a situation. In our model, we bring a new point of view
to situation characterisation by considering the activity as
separated from a context. An activity must be interpreted
in given contexts in order to fully understand the situation
(e.g. driving in the snow or on a dry road).

2.4.1 Situations
We have noted two points of view for describing situations.
In [14], Y. Li and J. Landay propose a new interaction
paradigm for Ubicomp based on activity (activity-based ubiq-
uitous computing). In their model, the relation between ac-
tivity and situation is defined as follows: An activity evolves
every time it is carried out in a particular situation. A sit-
uation is a set of actions or tasks performed under certain
circumstances. Circumstances are what we call contexts in
our model. For Loke in [15], the notion of context is linked
to the notion of situation. He proposes the aggregation of
contexts (perhaps varieties of) in order to determine the sit-
uation of entities. In that sense the situation is thought of as
being at a higher level than context. Loke makes a difference
between activity and situation and considers an activity as
a type of contextual information to characterise a situation.
Our model of situation combines the two visions and we de-
fine it as follows: A situation is any activity performed in
contexts (Fig. 4).

Figure 4: Situation model diagram in KUI

2.4.2 Activity
For Loke [15], activity typically refers to actions or opera-
tions undertaken by human beings such as “cooking”, “run-
ning”, “reading”. For Y. Li and J. Landay [14], an action like
“running” is not considered as an activity because it focuses
on an immediate goal. For Kuutti, in [13], an activity is the
long-term transformation process of an object (e.g. a user’s
body) oriented toward a motive (e.g. keeping fit). The no-
tions of “long term” and “immediate” allow the separation
of activities and actions. In our model (Fig. 5), we consider
an activity to be made of detected motions aggregated into
operations and actions, and it is an input for observers.

3. UMOVE: THE DEVELOPMENT FRAME-
WORK

In this section we describe the uMove framework that allows
to define and implement a KUI system on top of which spe-
cific applications will be developed. The framework contains
two specific parts: the conceptual framework and the Java
API.

Figure 5: Data flow from motion to situation in KUI

3.1 Related work
Pervasive computing aspects such as context-awareness (i.e
location-awareness) or activity-based application and rapid
prototyping toolboxes are nowadays often addressed in aca-
demic and commercial projects. They tend to fall into one of
two categories. One is the design of dedicated context-aware
applications such as GUIDE [7] or ubiCicero [11] which offer
solutions to contextualise information for users according to
their location (e.g. in museums). The other is rapid pro-
totyping toolboxes for activity-based applications, such as
those proposed by Li and Landay, Bannach et al. and Ghi-
ani et al. [14, 2, 12]. These toolboxes offer generic elements
to create a more specific application, and often include pre-
defined algorithms to help generate the applications.

With the uMove framework, we propose a way to represent
and manage a complex system made of different kinds of en-
tities taking into consideration their location, activity and
situation and on top of which a variety of different types of
individual applications can be plugged. Unlike [7, 11] who
focus on only specific applications or prototypes, uMove al-
lows programers to easily define all the entities, the relations
between them and the connected sensors, and to load the ac-
tivity and situation recognition modules. However, uMove
does not provide, like in [2], the activity (tasks) recognition
modules or algorithms but allows them to be separately de-
veloped and connected to the entities active in the system.
It is also not dedicated, like in [7] or [11], to one kind of
application but can be considered as the basic and indepen-
dent system to which applications are connected (like using
a shared database). For instance, a university campus with
buildings, rooms, students and professors can be represented
with uMove, and different applications such as a tracking
system for safety, an activity-based smart alert for students
or phone call transfer can be connected to the same system,
receiving data from different types of sensors and applying
specific activity recognition algorithms.

3.2 Conceptual framework
The conceptual framework is the tool used by developers to
theoretically design the system that will be observed. As

shown in Fig. 6, a KUI system has three layers responsible
for the different objects interacting together.

Figure 6: uMove framework

3.2.1 Sensor Layer
The sensor layer contains the widgets which are the logical
abstractions of the sensors connected to the system. A wid-
get is the generic interface to a category of sensors. For in-
stance, an application tracking the movement of users within
a building may need to connect location sensors, whatever
type they are. The location widget connects the sensor to
the system and provides the entity location to the higher
level. The advantage of the widget is that if the type of
sensor technology changes (e.g. RFID versus Bluetooth or
wifi), the widget remains the same: it will still provide an
entity location to the entity layer. Only the interface (the
driver) between the physical sensor and widget needs to be
adapted.

3.2.2 Entity Layer
In the entity layer, we find the logical representation of the
physical entities (i.e. users, places, objects) being observed.
Each entity (actor or place) is defined by its identity, its
role, its location within the system and its current motion
and activity. The entities are organised in an n-ary tree
and they all have a parent node except for the root of the
system (e.g. the world or the building). Entities get their lo-
cations, motions, activities and other contexts updated from
the connected widgets. Each entity is attached to an activ-
ity manager which aggregates the data received from the
different widgets and determines the current activity.

3.2.3 Observer Layer
The observation layer analyses the current situation of the
entity based on the activity and contexts. The observers
are the last filter between the entity and the application.
They listen for any entity changes and forward them to the
situation manager in order to have the new situation anal-
ysed. Depending to the result received from the situation
manager, the observer forward or not a message to the ap-

plication (e.g. a ”warning” message or ”critical situation”
message).

The uMove model allows developers to concentrate on the
application, the specific activity and situation algorithms
without worrying about the communication between sensors
(widgets), users or objects (entities) and their management
(creation, removal, modification).

3.3 uMove API
Once the system has been designed, the developer uses the
uMove Java API to create the different objects of the system
in a simple manner as shown in the following example.

KUISystem kuiSystem = new KUISystem();

Entity room403 = kuiSystem.createNewZoneEntity(

"A403", "Meeting Room", floor4,

null, room403Area, robinActivityManager);

kuiSystem.attachEntityToLocationWidget(

locationWidget, room403);

The system is represented by an object (KuiSystem) which
links the other objects described above (Entity, observer,
view, ActivityManager). KuiSystem offers the necessary
methods to access the system, to connect the sensors and
the applications and also launches all threads when the sys-
tem is started. The communication between objects is based
on the message listener concept. For instance, the observer
listens to the entities and automatically receives all messages
when any entity changes occur. The same concept is applied
between an entity and its connected sensors. This type of
asynchronous communication allows the system to be dy-
namic, possibly distributed, and guarantee that all object
processes run in parallel.

4. THE IWAT EVALUATION METHOD
Literature in the area of evaluation of pervasive systems
shows a trend towards using low-fidelity prototypes to both
gather user requirements and to evaluate potential system
designs. Some recent methods are particularly innovative
and encourage the evaluation of designs as soon as possi-
ble in order to maximize the amount of information gath-
ered and minimize implementation overhead. For instance,
Abowd et al. [1] used paratypes (situated experience proto-
types) to test models of interaction in real situations. While
standard methods are conducive to testing functional proto-
types in lab experiments, paratypes allow testing of design
concepts in real life.

In order to create prototypes for the types of testing men-
tioned above, visual programming tools such as those pro-
posed by Bannach et al. [2] have been suggested. Most eval-
uations of these tools are concerned with their usability and
aim at measuring the effectiveness of a tool to support the
prototyping phase. However, most of these prototyping tools
favor rapid development of prototypes rather than support-
ing the design of the application itself, and for this purpose
developers need to understand the design challenges. To
fill the gap between the worlds of end users and developers
Reilly et al. [16] suggest encouraging designers to immerse
themselves in the target population’s current practices to

gain a better understanding of user needs and thus be more
effective in the design of the pervasive system itself.

User evaluations of designed products and prototypes are
generally very useful to help understand a user’s expecta-
tions and requirements for a certain task, to measure the
usefulness of a pervasive system to support a task, or to eval-
uate the usability of its interface. However, even though the
product or prototype might use various hidden distributed
modules, which is often the case in pervasive computing,
users only perceive the tip of the iceberg since they interact
with a single front end. As such, the pervasive system can
be evaluated only as a whole, making it difficult to deduce
an error or problem in the functional design of some of its
modules.

We argue that once user requirements have been translated
into a system design, an evaluation of that design at a func-
tional level, and at a point before actual implementation
has begun, can greatly help to alleviate this problem. This
type of functional evaluation can help answer questions such
as: Is the architecture of the system well designed and ro-
bust? Do the individual modules allow for the necessary
behaviours? Do the modules communicate with each other
as expected? Does the global behavior of the pervasive sys-
tem meet technical and end-use requirements?

The IWaT (Interactive Walk-through) evaluation method
was designed to fill this gap and was inspired by the family
of walkthrough methods from User Centered Design (UCD).
The method can be used to test the design and compo-
nents architecture of a pervasive application to ensure that
the various algorithms, strategies, inferences (of activities or
context) and measurements (for example from sensors) cho-
sen by the designers/developers operate together smoothly
and form a coherent and comprehensive system. This is
particularly critical in pervasive computing systems where
the components, although distributed and independent, are
often developed by different teams who may have limited
contact with one another once development work begins.

IWaT is intended to complement existing UCD methods by
allowing results from UCD studies to be quickly incorpo-
rated into a new or existing design and tested for feasi-
bility and appropriateness before any time has been spent
on implementation, which in turn can greatly speed up the
design-implementation-evaluation loop. Implementation is
often costly in terms of time and manpower and it is always
difficult to modify code and/or the entire structure of the
project if the design is scrutinized only through evaluation
of an implemented system (even if this system is only an
early prototype). IWaT is intended to be used between the
design and implementation phases (Fig. 1) in order to re-
duce the risk of encountering design problems that are usu-
ally detected only during the prototype or system evaluation
phases.

Moreover, we believe that IWaT is a novel and interesting
method which fosters team work and favours the exchange
of information and ideas between development teams. It
makes the different teams more aware of the impact of their
own designs and ideas on the work of other teams, and gives
developers of individual components a more holistic view of

the system and the exact role that their component plays
in it. Combined with KUI modelling and the uMove frame-
work, IWaT can reduce the time needed for the development
and refinement processes.

4.1 How it works
IWaT requires two elements: 1) the conceptual models de-
signed in the uMove framework and 2) the interactive com-
ponents test.

4.1.1 Component models
In the development process, independently of the method
used, there are steps that define the software architecture,
possibly the design pattern to be used, algorithms that need
to be developed and the technological and hardware choices.
A uMove conceptual model helps to rapidly get the main
functionalities such as the objects involved, the activity or
situation algorithms (possibly in pseudo-code) and the se-
quence of operations. The model is important because 1)
it gives an idea of how the components will behave and 2)
it encourages reflection on the design [17]. However, the
model itself is not sufficient to assure the validity of the de-
sign within the complete project and needs to be tested with
the other component models.

4.1.2 Interactive component test
We now propose a method to test all of the different com-
ponents together. Each team comes with the model (for
instance the algorithms) they have developed. The goal is
to create a physical interaction between the components.
The developers become the “processors” and interpret their
algorithm. For example, the team responsible for the mo-
bile phone manually runs their application and sends paper-
based messages to the team responsible for the back-end
(server) application. Then these messages are interpreted
by applying the back-end application algorithm (Fig. 9) in
pseudo-code and possibly sending a message back to the mo-
bile phone team. The log of the events is done on a board
where a process sequence diagram is represented (Fig. 7).

Figure 7: The events are logged on a sequence dia-
gram board

The groups must prepare the environment in advance and
define: The physical position of the components (the teams),
the message flow between the components, the board for the
sequence diagram of the different components and the initial
state of the global application.

This method clearly shows the flow of information or mes-
sages between the components and quickly gives a good pic-
ture of how the project runs in general. In the next section

we present a case study in which the KUI model, uMove and
IWaT were applied together.

5. CASE STUDY: PROJECT ROBIN
The case study we used to evaluate the efficiency of the KUI
and uMove tools and IWaT is a project developed in the
scope of a master’s course on Pervasive Intelligence given at
the University of Fribourg. As part of the course project,
the students had to develop a system where user activities
and motion were taken as main input. The project used the
KUI model to define the objects of the system, the uMove
conceptual framework to plan the initial design, IWaT to
validate the design and uMove API to implement it.

5.1 Robin: activity-based rescue staff safety
management

The goal of the project was to develop an application able
to detect the motion and activity of rescue staff such as fire-
men or policemen. Depending on their movements within
a building, the system controls a robot sent ahead of the
person or the team to gather information (such as the state
of a room, temperature, fire or smoke) that might represent
or signal a potential physical danger for the rescue team.
For example, a fireman rescuing an injured person trapped
in a room might need to be aware of where danger areas
are. According to the robot’s data, the system is able to
transmit useful information to the fireman (fire alarm or
smoke density for instance) in order to help them perform
the appropriate rescue operation and to avoid a critical situ-
ations. The project was aimed at familiarising the students
with pervasive technologies (sensors, programming frame-
work) and pervasive concepts such as context-awareness, sit-
uation, activity-awareness, mobile computing and wireless
communication. It also introduced the notions of implicit
human-computer interaction and user-centered design.

5.2 The prototype
The project was developed in JAVA using uMove as the core
application, SunSPOTs1 as sensors for the motion and tem-
perature data and LEGO Mindstorm NTX2 for the robot.
The general design and decomposition of the application into
components was done together by all the students. Each
student actively participated in the definition of the project
needs and proposed solutions. Then, two groups were cre-
ated and each one had specific components to design and
develop. The first group was responsible for developing
the robot, the motion detection and the activity detection
classes (Fig. 8). The second group was in charge of the
observers, views, the situation management and the Robin
application including the robot control and feedback sent to
the mobile device carried by the fireman.

The two groups had to first work on the interfaces between
the different components. For instance, they defined the
type of interaction between the Robin application and the
robot or the type of motions processed in order to derive
the activities. Then each group worked on the algorithms
for the motion detection, activity detection and situation
analysis. Once ready, an IWaT session was organised to test
their work.
1http://www.sunspotworld.com/
2http://mindstorms.lego.com/Products/Default.aspx

Figure 8: Robin project architecture and group
tasks assignment

5.3 IWaT session
The goal of the session was 1) to test the preliminary algo-
rithms of the robot, motion recognition, activity and situa-
tion detection, i.e. identify the possible deadlocks and 2) to
validate the general design and decomposition of the project
before starting the implementation. The general scenario to
be tested was the situation where a fireman and a robot are
searching for heat sources on a floor that is possibly on fire.
The robot always has to be in front of the fireman and send
temperature readings to the Robin application in order to
inform the fireman of potentially dangerous situations.

First, the environment and the number of required partici-
pants, the physical distribution of the participants (Fig. 9)
and the sequence diagram board representing the different
components of the system was defined. The evaluation in-
volved a total of 8 people: 2 students for the motion and
activity recognition, 2 students for the situation manager
and Robin application, 1 student for the Robot, 2 assistants
for the uMove components (entity and observer), 1 assistant
for the sequence diagram board management.

Figure 9: Students applying their algorithm during
the IWaT session

All participants where grouped per component around a ta-

ble. The distribution of the components depended on their
inter-communication. For instance, the observer was next
to the situation manager and next to the Robin applica-
tion in order to facilitate physical message passing. The
sequence board was hidden from the participants and the
virtual robot represented on a floor map was also hidden.
No discussion was allowed during the run of the scenario.
The idea was to put the participants in the exact situation
of their component and avoid human interpretation bias.
Only the algorithms were interpreted. The initial situation
was “the fireman and the robot reach the floor and start to
search. The robot is still close to the fireman and no heat
source is detected. The fireman knows the layout of the
floor.”

A sequence was considered to be the complete processing of
a message. For instance, when footsteps were detected, an
event (message) was generated and sent to the entity which
sent it to the activity manager and waited for an answer.
The answer was forwarded to the observer and then to the
situation manager. Finally the situation manager processed
the activity and the Robin application produced the actual
detected situation level (e.g. normal or critical) and sent a
new command to the robot and feedback (if needed) to the
fireman. At that moment, the next sequence began. During
a sequence, each group manually applied their algorithm(s),
processed the input message and sent the result to the next
component.

5.4 Results
The scenario was played for about an hour and about 20
sequences were completed. The session revealed some im-
portant points that would have to be modified and/or ad-
justed in the project. The students highlighted the following
sources of problems undiscovered during the design phase:
1) Some situations could not be analysed because the activ-
ity was not defined properly, 2) the motion detection algo-
rithm was insufficient to detect proper movements, 3) the
robot was not autonomous enough and did not give enough
feedback on its location, 4) the fireman is delayed by the
robot, who got stuck quickly.

During the debriefing, the students talked about the general
behaviour of the application, and for instance, the idea of
removing or replacing the robot was raised. They also nat-
urally considered the decomposition of the application and
fine tuned the type of input and output each component
must receive and provide.

From the method evaluation point of view, we noticed that
the overall student experience was good and the discussions
following the session showed the motivation of the groups to
interact and exchange information in order to adjust the dif-
ferent components. It also allowed to note major problems
and bugs and possibly reconsider the pertinence of some
components. The most important point is that this method
made possible an important test before starting the concrete
implementation of the project.

6. CONCLUSION
In this paper we addressed the problem of designing and
evaluating pervasive computing systems in the early devel-
opment phases. These types of applications require an in-

tegration of different heterogeneous technologies, often dis-
tributed and it is difficult to evaluate the validity of the
technical choices as well as the project decomposition. We
proposed a new approach for modelling, validating and pro-
totyping pervasive applications. Our approach consists of a
KUI model [4] which allows developers to define the compo-
nents (users, environment, activities and situations) of the
future application, a JAVA API (uMove) for the prototyping
and a method (IWaT) to test the validity of choices such as
conceptual decomposition or technologies at an early stage.
We also illustrated the use of this approach by presenting a
case study applying the tools and method and we have in
particular analysed the impact of the IWaT method on the
design of the application.

The case study raised some points about the KUI model, the
uMove framework and the IWaT method that need to be ad-
dressed in future work. In the KUI model, we have found
that there exists a conceptual ambiguity in the definition of
the actor, the place and the role they can have in the sys-
tem. In the uMove conceptual method, we need to process
the propagation of the context changes in an more defined
manner, e.g. the change of temperature in a room might af-
fect the temperature of the actors and objects present in the
room. Lastly, we consider that the IWaT method is at an
early stage of definition and we need to now formally define
it and test it with other projects such as Hestia [5].

7. ACKNOWLEDGMENTS
We would like to thank Daniel Ostojic for his contribution
to the IWaT method and the session we organised to evalu-
ate the Robin project. Many thanks also to the students of
the Pervasive Intelligence course, Benjamin Hadorn, Adri-
ana Wilde, Fouad Murr and Tom Forrer, as well as our col-
leagues Amos Brocco and Apostolos Malatras for their active
participation during the evaluation session.

This work is supported by the Swiss National Fund for Sci-
entific Research Grant n.116355

8. REFERENCES
[1] G. Abowd, G. Hayes, G. Iachello, J. Kientz, S. Patel,

M. Stevens, and K. Truong. Prototypes and
paratypes: designing mobile and ubiquitous
computing applications. Pervasive Computing,
4(4):67–73, Oct.-Dec. 2005.

[2] D. Bannach, P. Lukowicz, and O. Amft. Rapid
prototyping of activity recognition applications.
Pervasive Computing, pages 22–31, April-June 2008.

[3] A. Bouvier. Management et projet. Hachette, Paris,
1994.

[4] P. Bruegger and B. Hirsbrunner. Kinetic user
interface: Interaction through motion for pervasive
computing systems. In 5th International Conference,
UAHCI 2009, Part of HCI International 2009.
Springer, 2009.

[5] P. Brugger, V. Pallotta, and B. Hirsbrunner.
Optimizing heating systems management using an
activity-based pervasive application. JDIM - Journal
of Digital Information Management, (ISSN
0972-7272), 2009. [To Appear].

[6] S. Carter and J. Mankoff. Prototypes in the wild

lessons from three ubicomp systems. Pervasive
Computing, 4(4):15–17, Oct-Dec 2005.

[7] K. Cheverst, N. Davies, K. Mitchell, A. Friday, and
C. Efstratiou. Developing a context-aware electronic
tourist guide: some issues and experiences. In CHI
’00: Proceedings of the SIGCHI conference on Human
factors in computing systems, pages 17–24, New York,
NY, USA, 2000. ACM.

[8] A. Dey, E.D Abowd, and G.D. Salber. A conceptual
framework and a toolkit for supporting the rapid
prototyping of context-aware applications. Human
Computer Interaction Journal, Vol 16:pages 97–166,
2001. Anchor article of a special issue on
Context-Aware Computing.

[9] P. Dourish. Where the Action Is: The Foundations of
Embodied Interaction. MIT Press, Cambridge, 2001.

[10] D. Fitton, C. Cheverst, C. Kray, A. Dix,
M. Rouncefield, and G. Salsis-Lagoudakis. Rapid
prototyping and user-centered design of interactive
display-based systems. Pervasive Computing,
4(4):58–66, Oct-Dec. 2005.

[11] G. Ghiani, F. Patterno, C. Santoro, and D. Spano. A
location-aware guide based on active rfids in
multi-device environments. CADUI 08, Spain, 2008.

[12] G. Ghiani, F. Patterno, and D. Spano. Cicero
designer: an environment for end-user development of
multi-device museum guides. IS-EUD ’09, Germany,
2009.

[13] K. Kuutti. Activity Theory as a Potential Framework
for Human-Computer Interaction Research. MIT
Press, 1996.

[14] Y. Li and J. A. Landay. Activity-based prototyping of
ubicomp applications for long-lived, everyday human
activities. In CHI ’08: Proceeding of the twenty-sixth
annual SIGCHI conference on Human factors in
computing systems, pages 1303–1312, New York, NY,
USA, 2008. ACM.

[15] S. W. Loke. Representing and reasoning with
situations for context-aware pervasive computing: a
logic programming perspective. The Knowledge
Engineering Review, pages 213 – 233, 2004.

[16] D. Reilly, D. Dearman, M. Welsman-Dinelle, and
K. Inkpen. Evaluating early prototypes in context:
trade-offs, challenges, and successes. Pervasive
Computing, 4(4):42–50, Oct.-Dec. 2005.

[17] D. Schön. The Reflective Practioner: How
Professionals Think in Action. Basic Book, New York,
1983.

[18] L. von Bertalanffy. General System Theory.
Foundations, Development, applications. George
Braziller, 1969.

[19] M. Weiser. The computer for the 21st century.
Scientific American 265, Vol 3:pages 94–104,
September 1991.

[20] M. Weiser and J.S. Brown. The coming age of calm
technology [1], consulted: April 2007.
http://www.cs.ucsb.edu/ ebeld-
ing/courses/284/w04/papers/calm.pdf.

