
Solving complex problems with computational and interfacing tools
D. Lalanne, G. Melissargos, P.Pu, {lalanne,melissargos,pu}@imt.dmt.epfl.ch

Ergonomics of Intelligent Systems and Design, Microengineering Dept, Swiss Federal Institute of Technology

1. Introduction
Solving complex problems requires a

considerable amount of computational power, intuition
and human skills. We are going to present two specific
cases in the area of design and scheduling. They are both
complex problems that can be solved with the help of
the same problem solving architecture that allows
human and machine to cooperate in an effective manner.

1.1 Computer aided creative design
As design has become an important

preoccupation according mainly to economic reasons,
Computer-Aided Design (CAD) is now a central
research in computer science. Many tools have been
developed in order to support construction like the well-
known AutoCAD.
However, creative design is a more complex cognitive
process because creative thinking is involved in this
step. Creative design mainly happens in the conceptual
step of design. Designers do not like conceptual design
step because it is intellectually difficult; it requires a
very high attention because the number of criterias is
often high, because the goals are often blur, because
some internal conflicts often exist and because it
requires tradeoffs. However, it is estimated that 85 % of
decisions, that allows to elaborate a final product, are
taken during conceptual design. Furthermore, reducing
the time between design and elaboration would be the
guarantee that a new concept reaches to an innovative
product.

Creative design requires both the studies of
creativity and design. Nevertheless, those two processes
of thinking are both ill defined. The former is tackled in
numerous domains and its sources are not yet surely
defined. It is needed in several areas like art, problem
solving and design and also in everyday task for
personal problem solving. On the other hand, design is
slightly better characterized; some forms of design are
formalized and a lot of taxonomy has been produced.
However, according to the growing complexity of our
world, design is becoming a more difficult task. Every
day we are confronted with design results and more and
more people are involved in design tasks. Thus, tools
that support designers are necessary in order to increase
their skill and to make them more creative and more
concerned about the quality of their design.

We have found two main types of approaches
in creative design. In the first one, researchers try to
make machine creative by either using neural networks,
case-based reasoning, genetic algorithms, or prototype-
based systems ([5], [7]). In the other approach, they try
to find the important features of human creativity in
order to support it [3]. A CAD system supports creative

design if it allows the user to define novel designs and
is creative if it discovers new designs by itself.

We do not believe in a clear taxonomy of types
of design because their boundaries are blur and because
it is generally impossible to classify a specific design.
In most of the cases, a designer has to deal with either
routine, innovative or creative cognitive processes; it is
the level of complexity of each step that distinguishes a
type of design from an other. Our taxonomy comes
from the observation of the process of creative design.
In our opinion, creative design comes from two types of
cognitive process: tradeoff and break-through process.
Those two kinds of process come from another
distinction between two extreme types of problem: over
and under-constrained problem. In under-constrained
problem, too many solutions are possible. People need
to do tradeoffs to find the optimal solution. However,
according to the large number of criteria, choices are
difficult. In over-constrained problem, there is no
solution. People have to find conflicts and to solve
them. It requires two things: consistency checking and
creativity to enlarge the space of solutions and thus to
avoid the conflicts. The limitation of human memory is
a problem. Dealing with about a hundred of constraints
is difficult and finding the escape requires ingeniosity;
the designer has to break-through the current space of
solutions.

1.2. Scheduling systems
One of the most frequent application areas of

informatics is scheduling. Scheduling problems come in
all shapes and sizes. Our work concentrates on reactive
schedulers as opposed to predictive ones. Given a global
schedule and any related information, the reactive
scheduler is responsible of accommodating any
requested changes that may affect either the timetable of
tasks or the allocation of resources to tasks [6]. The
flight rescheduler presented in this article is concerned
with the reallocation of resources to the scheduled tasks.
The resource allocation problem in reactive scheduling
is a hard one to solve. It is often bound to external, to
the schedule, events that are hard to be anticipated in
advance by the system. Even if the rescheduler succeeds
in taking into account all the needed parameters it may
end up with an under-constrained problem that produces
a large number of solutions, thus converting the initial
combinational problem to a discrete optimization one.
In both cases the active involvement of an expert
human operator is essential. The human expertise,
knowledge and reasoning have to be incorporated into
the problem solving process. There are already attempts
to blend interactivity with artificial intelligence
techniques in order to solve scheduling problems [2].
The user is actively involved into the process of

problem solving and aids into the performance of the
underlying computational engine. He either introduces
additional parameters, constraints and rules or he
controls the performance of the supplied computational
tools. But this is only the one direction from the bi-
directional communication link between the human
intelligence and the machine’s computational engine. In
order to succeed in an effective interaction model the
machine has to respond in a meaningful way that will
help the user’s understanding and reasoning process.

For example, in the case of an under-
constrainted problem in rescheduling, the system may
return a set of possible solutions. Each of the solutions,
if applied to the schedule, returns the schedule into a
new equilibrium. But which of the solutions is the
optimal one? How can the user decide? He has to go
through all of them, examine them, reason about their
applicability, compare them with each other and finally
select the most appropriate one. Each one of the
solutions is a set of new resource-to-task assignments.
Now we can easily imagine the poor scheduler’s
operator faced with a long textual list of 200 solutions.
It is obviously impossible for him to proceed. Instead,
the system should respond with a comprehensive
pictorial representation of all these solutions. By
encoding in one display all of the quantitative and
qualitative characteristics of the solutions we facilitate
the processing of information thus leading the user to
easier and more efficient decision making.

In our work we try to propose a computer
supported framework for scheduling problem solving
where interactive visualization enables a better
cooperation between the user and the machine. We
consider interactive visualization as the main vehicle for
seamless human-machine coordination in problem
solving for resource allocation. The reasoning process,
within the proposed framework, emerges from the
continuous collaboration of the machine intelligence
and the user expertise.

2. Presenting the two systems at a glance
2.1. COMIND: Computer aided creativity and
multicriteria optimization in design

To free machines from the pre-defined world or
to enrich them with interactions from nature, we must
allow humans to help them in a similar way that
humans benefit from the calculation and data processing
power of machines. COMIND's design environment
allows humans and computers to collaborate and
cooperate, sharing their cognitive and computational
resources. This human-centered design environment
offers many software modules as servicing agents
shown as small drawings in Fig.1. These agents help
humans define design problems, visualize solutions,
look for compromises in design tradeoffs, and discover
new design variables. They also reflect the design
process, support brainstorming and show design cases.

Figure 1: The Comind main entrance.

Figure 2: The flight rescheduling system.

2.2. The flight rescheduling system Flight rescheduling can be viewed as a resource
reallocation problem. The aircraft is the resource and the

flight is the consumer. There are different kinds of
airplanes with such attributes as the number of seats,
the occupancy per flight assigned to and a series of
constraints and rules, like a set of permissible airport
destinations and origins, maintenance ground times, etc.
The same holds for the flights which are characterized
by constraints and attributes like the departure and
arrival times and places, the flight and ground interval
times and the types of aircrafts permitted to be flown
by. There are more data objects like the airports, which
encapsulate a number of interdependencies and
characteristics that have to be taken into account when
rescheduling. Various artificial intelligence techniques
are employed so that a complex information system is
built, namely the flight schedule. This complexity is
hidden through a representational abstraction of the
flight schedule (fig. 2). The flight schedule has been
preplanned in a wise fashion and it is designed to meet
most of the existing requirements whether they come
from the technical, economical or political world of an
airline.

There are though, quite often, cases that dictate
changes into the current allocation scheme. A good
example is the need for aircraft upgrading due to
overbooking of a flight. Since all of the aircraft are all
of the time assigned to specific tasks the rescheduling
system has to shuffle some of the current assignments
so that both the request for upgrading can be satisfied
and the whole schedule meets the demands as planned

3. A common architecture
To facilitate the study of complex problem

solving systems we decompose the process of solving
in three phases. In the beginning, the system constructs
the necessary information workspace with which the
user can interact. The goal of this stage is to better
define the problem in itself and construct the appropriate
query. The user can interact with the information
workspace, explore it looking for aspects of the
problem he is not aware of and finally introduce any
parameters, rules and constraints that are not already
encoded into the system. After the submission of the
user’s query to the computational engine we pass to the
second phase, that of searching for solution. The search
engine looks for solutions that satisfy both the user’s
demands and the predefined constraints. The user can
monitor the progress of the search or he can even
interact with the search engine in itself. With the final
outcome of the search phase we enter into the third
stage of the problem solving process. Depending on the
result the user may be presented with no solution or
multiple ones. If no solution has been found then the
problem was over-constrained so the system and the
user have to reevaluate the problem, find the violating
constraints or the conflicts and relax them. When too
many solutions are found, the problem is under-
constrained and the user, with the help of the system,
has to evaluate them and select the most appropriate one
according to a set of tradeoffs. We must emphasize that

often, in several application areas, there is no clear cut
between the three phases. On the other hand, they
intermingle according to the needs of the problem
solving process. For example, in a case of network
traffic rescheduling that we have studied, it is possible
in the preprocessing phase to reach the optimal
solution. This is done via an interactive step by step
processing of the problem space.

Figure 3: A triangular open architecture.

It becomes apparent from studying the three
problem solving phases that the computational tools
and the human user have to work in a synergy
throughout the process of problem solving. In order to
achieve an effective cooperation there must be an
efficient communication mechanism in place. Our
experience has showed us that interactive visualization
may be the perfect candidate to reach this target.
Machines are powerful for their computational skills
and humans are particularly strong for their intuitive and
creative qualities. In order to make them able to
cooperate, we use a triangular architecture containing
the user, computational tools and interfacing tools (fig.
3). Each item can communicate to an other one. The
user can profit of the machine calculation power and the
machine can profit of the expertise and of the intuition
of the user. The interfacing tools serve as an interactive
workspace allowing human and machine cooperation.
The user can use a same interfacing tool in order to
communicate with several computational tools or use a
same computational tool with different interfacing tools
in order to have different points of view of a same
calculation. Furthermore, simple interactions between
the computational tools and the users can take place in a
straight forward manner without any intermediaries.

However, complex interactive visualizations are
more demanding and they require the presence of special
interfacing tools. This independency between actors
provide an open architecture, a kind of modularity
allowing all the combination of tools. Essentially, the
interactive visualization acts as a bi-directional link
between the artificial intelligence and human

intelligence. The benefactor of such an efficient
communication is the problem solving process.

3.1. First phase: Defining the problem
3.1.1. In Comind

In order to define the problem, the designer is
first using the Brainstorming workspace (fig. 4). In this
step, the designer can type freely ideas about the
problem in an editor. The Brainstorming assistant
proposes analogies with older sessions; the goal is to
produce as many ideas as possible. Other helps are
provided in order to support the structuration of the
problem. The aim of the Brainstorming assistant is
both to keep a trace of initial ideas, goals, and to
support the formalization of the problem.

Figure 4: The Comind’s Brainstorming agent.

Figure 5: The Comind’sParam-Def agent.

After the production of a good number of ideas,
the designer decides to use PARAM-DEF in order to

define his problem in a more formal way and to be able
to solve it (fig.5). As the number of constraints
increases, the resolution of the problem can get
impossible for a human solver. Artificial intelligence
techniques for search and for finding solutions in a
constraints’ network are well developed. The machine’s
power has considerably increased and thus computers are
good computational assistants for humans. The
definition follows the structure of a Constraint
Satisfaction Problem. However, the constraints can be
defined by either logic rules or matrices. Rules’ writing
can be a difficult task for a designer. The PARAM-DEF
assistant supports this process by providing to the user
a menu containing all the possible types of rule and
their intuitive translation. It also provides a
visualization of the graph created by parameters and
constraints as shown in figure 3. It is a good visual
feedback for the user because it gives a short view of the
constraints’ network.

3.1.2. In the Flight rescheduling system
The infosphere [1] is the set of all the available

information concerning the area of a scheduling
application. For example in the case of flight
scheduling the periodical flights plan, the operational
data of the airline's fleet, the characteristics of all
reachable airports and the actual weather conditions
along flying routes constitute a part of the infosphere.
All these data do not necessarily reside in the same place
but they can be distributed among several,
heterogeneous databases. They can also be found as part
of the knowledge of the human operator. When a
problem arises the operator needs to turn to the
rescheduling application for reallocating resources. His
first task is to confine the problem area by retrieving
from the infosphere only the relative information. The
system responds by building a visual workspace. The
user can interact with it, adding or collapsing data from
the infosphere or information he draws from his
personal knowledge. The final goal is to both refine the
visual workspace and build a query that best represents
the rescheduling problem.

Refining the workspace serves a double
objective, it restricts the search space and it helps the
user to understand all the parameters of the problem and
how possible solutions may affect the current status of
allocations. In the case of flight scheduling a possible
problem scenario is the demand for upgrading an aircraft
scheduled to fly a particular route. Since all of the
airplanes are at all times supposed to be allocated at a
task - maintenance included - it is obvious that a
reshuffle has to take place so that another, larger in
seating capacity, airplane is assigned to this flight and
at the same time the rest of the schedule can be
performed in a similarly satisfactory way. Although the
task in hand seems to be trivial, in reality it is a hard
combinational problem. First of all, the system is
responsible of constructing and maintaining the visual
workspace; a representation of a complex information

equilibrium of constraints, rules and interdependencies.
Visualizing and interacting within this

workspace is the only way to convey to the user all this
amount of information. In our example the main visual
abstraction being used in the visual workspace is the
pictorial representation of the flight schedule, shown in
figure 2. The flights, depicted as rectangles, are ordered
in the horizontal axis according to time and in the
vertical axis according to the aircraft currently assigned
to them. Flight names, airport origins and destinations
and time dependencies can be instantly seen. With some
further inspection more useful information can be
deduced like similarity patterns that may point to
specific exchange candidates, scheduling periods and
aircraft’s flying hours. On user's demand, more data can
be displayed such as seating capacities, flight
occupancies, airport characteristics, aircraft attributes
and required ground times. Particular flights can be
selected for aircraft reassignment or the user can
suggest, by dragging and dropping flight rectangles,
specific reallocations to be included in the solutions It
is important to note that everything the operator sees in
his workspace specifies the subset of the whole schedule
on which any changes can take place. It is only the
flights, aircraft and time horizon being displayed that
determine the boundaries of the search space. In the case
of our upgrading example the user may build the visual
workspace by selecting the aircraft to be reallocated and
all the airplanes of the same type and of another type
that has compatible characteristics but larger seating
capacity. He can also restrict the time horizon in one
week so that any proposed changes will affect the
overall schedule within this time period only.

3.2. Solving the problem
3.2.1. In Comind

We have implemented different algorithm for
solving a CSP. We provide to the user visualizations of
the going-through process of those algorithms. S/he is
thus in control of the searches and can decide to stop
them when ever s/he wants. For example, an usual user
interaction with our system consists in first using node-
consistency, and then arc-consistency. The user can then
evaluate the number of solutions for the problem by
using the knuth algorithm. If it is under-constrained, he
can either specify more constraints or use the tradeoff
agent in order to compare the solutions. If it is over-
constrained, the user should use the elicit conflict agent
in order to release the problem. In the case where the
problem is neither over nor under-contrained, the user
can do a backtracking. In all this step, visualizations are
provided. It is a good way for the user to observe the
processing and to control it. For example, the
visualization in the figure 6 shows the going-through
process of an intelligent backtracking, the number of
solutions already found, the percentage of the space
already browsed and the time remaining. When the
algorithm stop, the according responsible constraints are
represented by a color. The idea is mainly to make the

user able to use several kind of algorithms, making
them cooperate through interactive visualization.

Figure 6: The Comind’s Solve agent.

3.2.2. In the Flight rescheduling system
After the user enters any additional constraints

or preferences he invokes the system's search engine. At
this moment we pass into the second phase of the
rescheduling process. Although the flight rescheduling
application we have built offers limited interactivity and
visualization during this particular phase, it is in some
cases desirable to do so. When the search space is large
and presents qualitative or quantitative regularities it is
often advantageous to visualize both the process of
searching and where the solutions are found. This
permits to the user to either interrupt the search and
continue with the already found solutions or to uncover
possible areas of contention. According to the best case
scenario the machine based search will respond with one
and only solution that best meets the user query.
Unfortunately this is rarely the case in resource
allocation. If the problem is over-constrained then no
answer will be found. We can remedy this situation by
returning to the visual workspace and relaxing some of
the imposed constraints or simply enlarging its size.

Figure 7: The Comind’s Tradeoff assistant.

3.3. Helping tradeoff for under-constrained
problems
3.3.1. In Comind

The goal of the tradeoff agent is to find the optimal
solution in an under-constrained problem. For example,
figure 7 represents the multicriteria optimization of a
land allocation problem. The user has defined criterias,
like the cost, the view’s quality or the noise tolerance,
in order to compare the solutions. Several visualizations
are proposed in order to help the user juggling with
tradeoffs. Visual interactivity is particularly important
here because it allows, by interacting with different
views of solutions, to find the better solutions
according to a certain set of criterias. Furthermore, when
the user has the intuition that a solution can be good,
s/he is free to make it optimal by finding the set of
criteria which satisfies it. The designer can thus also
evaluate the quality, the sharpness, of the criteria.
3.3.2. In the Flight rescheduling system

At this stage, the human expert must be
engaged in a productive loop process of examining,
evaluating and filtering out the solutions set. He can
reason which solution best fits the problem, based on
knowledge patterns drawn from experience, subjective
preferences and/or additional criteria, such as the
introduction of last minute qualitative constraints. The
ultimate goal is to select the optimal solution.
Experience during the development of the flight
rescheduling system has showed that multiple, partially
both complementary and repetitive in context,
interactive representations of the solution space can

greatly assist this goal. The user interacts, with any of
the, displayed in parallel, representations in order to
solve any perceptual ambiguities, deepen the level of
displayed information and/or impose his own
constraints thus limiting the number of available
solutions. An intercommunication mechanism between
the different representations creates an additional level of
visual information flow towards the user. Therefore, the
interrelations between solution attributes and contextual
groupings of the solutions become apparent. All in all,
information abstraction and interactive visualization
along with machine based constraint satisfaction, free
up the reasoning process by hiding unnecessary
information details and speed up the ability to
approximate the optimal solution. In the flight
rescheduling system there are four morphotypes being
utilized in the postprocessing phase, all displayed in the
same screen, each occupying a quarter and in operational
coordination with each other (fig. 8). The upper left
portion of the interface is a map of the children nodes of
a tree, build with the ID3 algorithm. The children nodes
represent all the available solutions. So, each rectangle
is a solution with the color codifying its number of
aircraft reassignments. Each subsection of the map
represents one of the subtrees of the current level of the
tree. Every split of the tree corresponds to a decision to
be made on which aircraft is to be assigned to the given
flight.

Figure 8: The flight rescheduling’s tradeoff workspace.

If the user selects one of the possible aircrafts then he is
left only with that subtree of solutions to work with

and the tree map is redrawn accordingly. The upper right
portion of the screen is dedicated to a 3D abstraction of

the solutions, with each cube depicting a solution. The
3 dimensions of the cube are analogous to three
characteristics of the solution, the number of aircraft
reassignments, the time span of the exchanges and the
number of different individual aircrafts being involved.
The bottom left section of the text is a simple textual
representation where each line describes a solution. The
right bottom part is a graphical plot of the solutions.
The horizontal axis hosts the flights and the vertical one
the aircrafts participating in all of the solutions. Each
button of the plot indicates how many solutions include
the aircraft-flight assignment of that position. The user
can take out, if he presses that button, all the
corresponding solutions. In a similar way, solutions can
be taken out by deselecting individual aircrafts or
flights.

It must be mentioned that all of the supported
abstractions are interdependent and coordinated with each
other. So when for example a 3d cube solution is picked
then the right solutions are highlighted in the rest of the
representations. Similarly, if solutions are taken out
from the solutions plot then the corresponding cubes
and rectangles are disabled, dark grayed in color, and the
listbox of textual solutions is annotated. Detailed
information about any participating object of the
abstractions can be retrieved on demand.

3.4. Eliciting the conflict for over-
constrained problem
3.4.1. In Comind

An over-constrained problem is a problem that
does not produce any solutions. It is over-constrained
either because the problem is over-determined, too many
constraints have been defined, or because of a
conflicting definition. This distingo between an over-
determined definition and a conflicting definition is not
really correct theoretically, nevertheless, for the user the
difference is quite big. When a problem is over-
determined, the user has to relax constraints. When the
definition is conflicting, he has to rethink his problem.

When a problem is over-constrained, a normal
backtracking does not find any solution. Partial CSP is
most often used technic for diagnosing over-constrained
systems [4]. It consists in the search of a satisfiable
sub-problem. The biggest satisfiable sub-problem is
considered as the closest of the initial definition and is
supposed to generate the optimal solutions. Different
optimization criteria, called metrics in PCSP, are used
in order to decide which is the smallest set of
constraints to relax, or the biggest sub-problem with
solutions. The Maximal Satisfiability (Max CSP) is
one of those metrics. It selects solutions which
maximize the number of constraints satisfied without
distinguishing them. More often a weight mechanism is
introduced in order to prioritize the relaxation of certain
constraints. Hierarchy, probability, fuzziness,
temporality, or dynamism are different methods used to
extend PCSP. According to the PCSP formalism, less a
tuple is violated, better the solution is. Nevertheless, in

design, it is not always true. The method we propose is
different because it is based on user’s intuition and the
algorithm we propose help the user diagnosing the
conflict. Thus, our method can be seen has an
alternative to Partial CSP.

Finding the semantic antagonism that forbids
the finding of solution is quite impossible for a
machine. Furthermore, a problem can produce no
solutions but possesses no real conflict. It seems that it
is hard to deal with conflict. In the context of design,
eliciting automatically the most important conflict is a
difficult task to solve as far as computer programs are
not yet able to distinguish a semantic conflict from
another. As conflict elicitation is an hard problem, we
propose a different approach than the automatic one.
The idea is to propose to the user a set of tools that can
help him to deal with an over-constrained problem. In
general, we mainly want to show that when artificial
intelligence techniques fail to solving a problem,
interactive systems are able to build a synergy between
natural and artificial intelligence.

Furthermore, in my point of view, conflict is
just a view of mind, there are no conflict, just
constraints violations. What can be considered as a
conflict is, at most, a set of constraints which violates
its related tuples 100% of the time. But this case is too
rare to be used for the implementation. According to
this non-belief in conflict for the implementation, we
propose several visualizations based on constraint
violation instead of conflict.
The elicit conflict entity is distributed in several sub-
entities applicable to different type of problem but let to
the choice of the user.
Set of constraints responsibility distribution
(SCRD)

Figure 9: The Comind’s Elicit conflict agent.

The idea behind the first algorithm is based on the
distribution of the sets of constraints responsible of the
failure of each tuples of the space. The algorithm also
gives back the the number of tuples each set is
violating. The visualization contains two different
views of the same space (fig. 9). Both represent the
total space of tuples. Each different region represents the
tuples forbidden by a specific set of constraints. Thus,
the size of the region represents the number of tuples
violated by a specific set of constraints. The sum of all

the violations of tuples is equal to the number
maximum of tuples for an over-constrained problem.
The rectangles, the set of constraints, are ordered by
their numbers of constraints. The smallest sets are the
first ones beginning from the top-left part of the
visualization. In fact, it is generally more easy to relax
a small number of constraints than a big one for
cognitive reasons mainly.

The first space at the top of the visualization
uses a second argument for ordering. Inside each family
having the same number of constraints, the sets are
ordered by their inclusive degree of violation. All the
constraints of the set need to be violated in order to be
considered as responsible of the violation. For example,
a set of constraints containing only one constraint
which is never satisfied (100% of violation) is going to
be the first one at the top left part of the visualization.
Notice that each set of constraints have a different degree
of darkness according to their percentage of inclusive
violation. The second space at the bottom represents
also the total space of tuples. Inside each family having
the same number of constraints, the sets are ordered by
their exclusive degree of violation. Only one constraint
of the set needs to be in order for the set to be
considered as responsible of the violation. Notice that
here also each set of constraints have a different degree
of darkness according to their percentage of exclusive
violation. Notice also that when the color of the space
is black, the set of constraints is violating at 100%,
thus no solution can be found without relaxing it. It is
a conflict.
The visualization provide also the number of tuples that
are forbidden by a set of constraints. If a set of
constraints is removed of the problem, the solutions
found will correspond to the size of the space of its
corresponding region plus the size of the space of its
corresponding sub-set of constraints. This provides to
the designer a good indication of which set of
constraints he has to work on in order to find optimal
solutions. Furthermore, by cliquing on a specific area of
the visualization, he obtains the solutions related.
Knuth based pruning of the conflicting space

When the number of parameters and the size of
their domain increases, the first family of algorithms is
still consuming. For this reason, we propose an
interactive approach that combines different simple
algorithms in order to reduce the initial space and make
the use of the previous algorithm possible.
It first uses the Knuth algorithm for evaluating the
efficiency of backtracking programs. The Knuth
algorithm is using a Monte Carlo approach, based on a
random exploration of the tree. For each partial
solution, a random valid continuation is chosen. When
the algorithm reach a leave of the tree, the estimated
number of solutions is returned, according to the going
through. The algorithm goes through only one node of
each level in the search tree and is thus very fast.

We use here this approach in order to estimate
the number of solutions of each sub-problems, all the
problem minus one parameter. The previous algorithm
is very fast but is an estimation and thus some mistakes
can happens. Nevertheless, its goal is mainly to give to
the user an idea of which part of the problem he has to
revise. It is also going to be useful for the user in order
to reducing the size of the problem and for engaging a
future more detailed research. The visualization attached
to this algorithm is very simple. It represents the
different regions of the initial problem minus one
parameter and the estimation of their number of
solutions. Each rectangle represents the relative number
of solutions like a classic histogram.

4. Conclusion
We have shown two example systems targeting
complex problem solving and the common architecture
they use. The triangle composed of the user,
computational tools, and interfacing tools is an effective
and simple architecture that can be applied to many
problem solving application areas. Where artificial
intelligence technics fail, human intelligence can be
used as the catalyst for solving any deadlocks.
Furthermore, the human can use the available
computational tools to expand his memory, processing
and reasoning capabilities and the support of interfacing
tools to improve his attentional memory and his
perceptual skills.

Bibliography
1. Card "Visualizing Retrieved Information: A Survey",

IEEE Computer Graphics and Applications, March
1996, pp.63-67.

2. Choueiry, B. Y. and Faltings, B., "Interactive Resource
Allocation by Problem Decomposition and Temporal
Abstractions", Second European Workshop on
Planning, Vadstena, Sweden, 1993. In Current Trends
in AI Planning, In series Frontiers in AI and
Applications, IOS Press, Amesterdam, 1994.

3. Fischer, G.: Creativity enhancing design
environments, in Modeling Creativity and Knowledge-
Based Creative Design, edited by J. S. Gero and M. L.
Maher, Lawrence Erlbaum Associates, Inc., Publishers,
1993.

4. Freuder E.C. and Wallace R.J., Partial Constraint
Satisfaction, in Lecture Notes in Computer Science,
Springer Verlag, 1995.

5. Gomes P., Bento C., Gago P., and Costa E.: Towards a
Case-Based Model for Creative Processes, in
Proceedings of the Eurpean Conference on Artificial
Intelligence, Budapest, 1996.

6. Wallace, M., "Applying Constraints for Scheduling",
in B. Mayoh, E. Tyugu, J. Penjaam (Eds.), "Constraint
Programming: Proceedings 1993 NATO ASI", NATO
Advanced Science Institute Series, Springer, 1994.

7. Woodbury, R.: A genetic approach to creative design,
in Modeling Creativity and Knowledge-Based Creative
Design, edited by J. S. Gero and M. L. Maher, Lawrence
Erlbaum Associates, Inc., Publishers, 1993.

8.

