Interactive Problem Solving via Algorithm Visualization

#### **Pearl Pu Faltings**

Ergonomics & Database Lab Ecole Polytechnique Fédérale de Lausanne

#### Denis Lalanne

LIA-CERI, Université d'Avignon





## **Motivation**

- powerful algorithms fail to explain the results
- problems difficult for both human and machine

### **Problem statement**

 interactive problem solving using algorithm visualization - a case study in conceptual design with constraint satisfaction techniques

## **Outline of talk**

- conceptual design
- constraint satisfaction algorithms
- visualization metaphors
  - kaleidoscope
  - MAP
  - Lattice
- Related works
- Conclusion

## **Conceptual design**

- "Design is not description of what is, it is exploration of what might be" -- Bill Mitchell
- Computational approximation -- define search space, automatic search, constraint satisfaction
- Product conceptual design, configuration design, land use design....

## **Constraint satisfaction problem (CSP)**

- a set of variables
- each variable has a domain a set of permissible values
- a set of constraints
- simple examples: map coloring, n-queen

# Design example defined as CSP



Lot3, lot5, lot7 and lot9 are all relatively flat sites with fairly good soil conditions. Lot10 and lot12 are moderately sloped sites in a nice wooded location, but have poor soil conditions. Lot17 is a very steep site. Lot11 ant lot17 are elevated sites facing southwest and down into a valley that has a lake and some wooded area.

The problem solver's task is to come up with assignments of land uses to sites. A complete design is one in which each land use has been assigned to a lot. The final design should be one which complies with a given set of criteria.

- •The dumpsite and the cemetery should not be visible from either houses, nor apartment building.
- •Steep slopes are to be avoided for building.
- Poor soil should be avoided for those land uses that involve
  construction.
- •The recreational area has to be near the lake.
- •The highway is noisy and ugly and should be avoided when locating the apartments, the single-family housing complex and the recreational areas.

•The supermarket cannot be in front of the single-family houses, the dumpsite, and of the cemetery, mainly for esthetical reason.

((dumpsite == 3) or (cemetery == 3)) -> ((apartment != 5) and (apartment != 7))

## **Search algorithms for CSP**

- simple backtracking
- pre-processing and SB
- Monte Carlo method by Knuth
- algorithms are np-complete in general

### Kaleidoscope – visualizing search



## **Constraint Editor**



#### Visualizing simple backtracking



#### Visualizing Knuth algorithm



#### Visualizing variable re-ordering



## **Discovery with Kaleidoscope**

- does thrashing occur, frequently?
- Are solutions diversified or concentrated in clusters?
- Are solutions abundant or futile
- if variables re-ordered, does solution generation become faster?

## Search in under-constrained spaces



## Visualizing land assignment problem





Visualizing tradeoffs of solutions in MAP: multiple attribute Pareto

## Search in over-constrained space

- one or several sets of constraints contain no solution
- diagnosing them is hard without visualization
- Lattice visualization

## Minimal conflict set(s)

- A constraint set is a conflict set if it does not allow any partial solutions
- a constraint set is the minimal conflict set if no smaller set is a constraint set
- a constraint set cannot allow any solutions iff it contains at least one minimal conflict set







beauty == 4, complexity == 5,

usability == 4, implementation == 1 e

### Lattice visualization





#### Kaleidoscope, MAP, and Lattice in one interface

## **Related works**

- algorithm visualization
- perceptual inference
- attribute and influence explorers
- Tilebars
- dynamic aggregation (radial visualization)

## **Usability study**

- what to test? more than usability of system
- Help designers discover new solutions via algorithm visualization

## Conclusion

- Presented Kaleidoscope, MAP, Lattice
- Interact with designers to explore, evaluate, and discover new design solutions
- visualization as a means for "interactive intelligence"