Gesture Control of Music Systems

Frédéric Bevilacqua
Ircam
Real Time Musical Interactions Team

Frederic.Bevilacqua@ircam.fr
http://imtr.ircam.fr
Plan

- Research Context
- Digital Musical Instruments
- Gesture and Music
 - Gesture Analysis/Recognition of Musicians' Gestures
- Mapping between Gestures and Sounds
 - Gesture Following and Recognition
- Applications
Sound Synthesis

- analysis/synthesis
- concatenative synthesis
- physical model

Gesture Capture

- sensors
- video
- game interfaces
Digital Music Instruments
Musical Digital Instruments

In interaction paradigms:
- Sound analysis
- Gesture analysis
- Synchronization
- Gesture-sound mapping

Out:
- Sound synthesis
- Audio processing
- Visualization
Contexts

Music Technology
Human Machine Interaction
“Gesture Research”, cognitive sciences

Digital Musical Instruments
Interface
Sound Synthesis
Interaction Design
Digital Music Instruments

- **Instrument-like**
 - replicate an acoustic instrument

- **Instrument-inspired**
 - gesture or interface inspired from an acoustic instrument, but the final musical goal is different than the acoustic instrument

- **Extended instrument, Augmented Instrument, Hyper Instrument**
 - Acoustic instrument with additional sensors

- **Alternate controller**
 - New design

« Instrument-like »

clavier MIDI Keyboard

EWI Electronic Wind Controller (AKAI)

Marimba Lumina (Buchla)

http://fr.youtube.com/watch?v=FNlKY5kGwLg
« Instrument-inspired »

Violon MIDI - Suguru Goto
Augmented Instruments

HyperCello
Tod Machover / Yo-Yo Ma
(1991)

Clarinette & DataGlove,
Butch Rovan
Theremin, 1928
« Alternative controllers »

« The Hands », Michel Waisviz

http://fr.youtube.com/watch?v=U1L-mVGqug4

Le Méta-Instrument - Serge de Laubier
Georgia Tech’s Guthman Musical Instrument Competition (2009)

Jaime Oliver's Silent Drum
Georgia Tech’s Guthman Musical Instrument Competition (2009)

the Slabs, David Wessel (CNMAT, Berkley)
Commercial interfaces
Stanford Laptop Orchestra (SLOrk)
Stanford Mobile Phone Orchestra (MoPhO)

"do mobile phones dream of electric orchestras?"

http://mopho.stanford.edu/
Da Fact
reactable

http://www.reactable.com/
Installation Grainstick

- Cité des Sciences Paris

Pierre Jodlowski Raphaël Thibault
Ircam
Applications

- Music & New Media
 - professional level, music performance, composition
 - music pedagogy
 - music game

- HCl: interaction paradigms using “expressive gestures”

- Rehabilitation (?)
 Sonification of gesture/action (?)
Links to the HCI field

• Notion of embodied interaction
 ‣ M. Leman *Embodied Music Cognition and Mediation Technology*, MIT Press

• Tangible interfaces, augmented reality

• Affective computing

• Collaborative and distributed interaction
Bill Buxton

• http://www.billbuxton.com/buxtonIRGVideos.html

• http://www.youtube.com/watch?v=Arrus9CxUiA
Musical Interfaces

- action-perception loop
- importance of timing and synchronization
 - requirements: low latency (< 10 ms)
- from triggering events... to using continuous gestures
- notion of expressivity: measure of “how” a gesture is performed
- notions of “goal” and “efficiency” different than in standard HCI
"Clearly, electronic music systems allow much freedom for the performer, because the mappings between control units, on the one hand, and some production units, on the other hand, are not constrained by any biomechanical regularities. (...) However, as most electronic music performers know, it is exactly this freedom of mapping that may disturb the sense of contact and of non-mediation".

"Can we find a way of interacting with machines so that artistic expression can be fully integrated with contemporary technologies? »

Gesture and Music
Gesture and Music

Some references:

Types of Musical Gestures

Ancillary, sound-accompanying, and communicative

Sound-producing

Sound-modifying

Types of Musical Gestures

Capturing Musician Motion

Violin bowing

sensor attached on the bow

3D optical motion capture

hybrid system

- F. Bevilacqua, N. Rasamimanana, E. Fléty, S. Lemouton, F. Baschet «The augmented violin project: research, composition and performance report» NIME 06

Capturing Musician Gestures

- *Direct* capture of movement, pressure etc using sensors

- *Indirect* capture based on the sound analysis
Bowing styles characterization

Similar works

- PCA + KNN
Bowing - Segmentation

\[\Delta t \]

\[\Delta t \]

Acceleration [a.u.]

time
Bowing recognition: Real time implementation (Max/MSP)

OSC in

median filter

gesture “intensity” computation

offset removal

1st order filtering

peak detection

peak selection

$a_{\text{max}}, a_{\text{min}}$

knn recognition

segmentation

characterization/recognition

OSC out
BogenLied -

- **mic**
- **accelerometers + wireless module**
- **Receiver**
- **soundcard**
- **spatialized sound (6 channels)**

Sound processing

Gesture processing
Bowing styles

acceleration vs velocity

détaché

martelé

spiccato
Influence on bowing frequency

- Position
- Velocity
- Acceleration
- Time

N. Rasamimanana et al., GW 2007, Lecture Notes in Artificial Intelligence
Bowing model

• Minimizing
 – Minimum impulse: trapezoidal “continuous control”
 – Minimum jerk (discrete) “balistic control”
Bowing style - scale

Finding the best model

Détaché

Martelé

Minimum impulse (Trapezoidal)

Minimum Jerk

N. Rasamimanana, F. Bevilacqua. « Effort-based analysis of bowing movements: evidence of anticipation effects ». Journal of New Music Research,
Gestural Co-articulation

detached *martelé*

Minimum Impulse

Minimum Jerk

![Graph showing percentage comparison between detachment and martelé techniques](chart.png)
Co-articulation effect

- major difficulty for segmentation and characterization
 - using di-gesture ? (similarly to diphone)
- can be used to anticipate (towards intention ?)
- expressivity links to co-articulation
Gesture to Sound Mapping
Mapping

See also:
• "Mapping Strategies in Interactive Computer Music." Organised Sound, 7(2), Marcelo Wanderley Ed.
Mapping

- Low Level vs High Level

Linguistic-based descriptions of semantical properties (meaning, affect, emotion, expressiveness, and so on)

Gesture-based descriptions as trajectories in spaces

Signal-based descriptions of the syntactical features

Mapping

• Spatial vs Temporal :
 ‣ « Spatial » : relationship independent of the temporal ordering of data
 ‣ « Temporel » : relationship between temporal processes

• Direct vs Indirect
 ‣ Direct :
 - sensor data directly connected to music parameters
 - relationship “manually” set
 ‣ Indirect
 - uses machine learning techniques to set the relationship
Mapping (Spatial)

- one-to-one

sensor data → sound parameters
Mapping Musical Instruments

IDMIL lab, Mc Gill
Mapping

- one-to-many

sensor data → sound parameters

Fig. 2. Divergent Mapping: One control operates many parameters.
Interpolation

Mapping

• many-to-one

Fig. 1. Convergent Mapping; Many controls operate one parameter.
Simple ou complexe mapping ?

Fig. 16. Group A sounds: stepwise uni-parameter changes.

Fig. 17. Group B sounds: continuous non-simultaneous changes.

Fig. 18. Group C sounds: continuous simultaneous changes.
Conclusions of Hunt and Kirk study

• The multiparametric interface allowed people to think gesturally, or to mentally rehearse sounds as shapes.

• The majority of users felt that the multiparametric interface had the most long-term potential.

• Several users reported that the multiparametric interface was “fun”.
Mapping

- Spatial vs Temporal:
 - « Spatial »: relationship independent of the temporal ordering of data
 - « Temporel »: relationship between temporal processes
Indirect Mapping using Machine Learning Techniques

- Neural Network
 - Mostly static postures

- Principal Component Analysis
 - Data dimension reduction

- Finite State Machine
 - Modeling sequences of postures

- DTW, HMM methods
 - Recognition of temporal profiles
Synchronization and recognition
Sydney Fels : Glove-TalkII

- adaptive Interface that Maps Hand Gestures to Speech
- using neural network

Conducting gestures

- Several works on conducting gestures
 - Study of professional conducting gesture
 - Beat detections, tempo, anticipation
 - Public Installation
 - Music Pedagogy

Figure 1: *Maestro*, an interactive conducting exhibit for children that we developed, at the Betty Brinn Children’s Museum in Milwaukee, USA. Photo appears courtesy of the Betty Brinn Children’s Museum in Milwaukee, WI, USA.

Figure 6: The left figure shows the *conga* graph for the Four-Beat Neutral-Legato gesture profile. Five features are detected, which are used to trigger the progress of a state machine that also acts as a beat predictor. The input to the state machine is the current progress (0 to 1) of the baton as it moves through one complete cycle of the gesture, starting at the first beat. The right figure shows the corresponding beat pattern that is tracked; numbered circles indicate beats, squared labels indicate the features that are tracked and the state that they correspond to.

“Multimodal Music Stand”

Score Following - Antescofo~

Score following

- For Score Following References:
- http://imtr.ircam.fr/imtr/Score_Following_History
- Best systems use Markov/Semi-Markov modelling of musical events
Score following

- Antescofo (Anticipatory Score Follower)

Score Following / Gesture Follower

score

Modeling (HMM)

symbols

Modeling (HMM)

signal
gesture follower @ Ircam

http://imtr.ircam.fr/imtr/Gesture_Follower

Goals

• Hyp: Gesture « meaning » is in temporal evolutions

• Real-time gesture analysis:
 ‣ gesture following: time progression of the performed gesture
 ‣ recognition/characterization: similarity of the performed gesture to prerecorded gestures

• Requirements
 ‣ simple learning procedure, with a single example
 ‣ adaptation to the user idiosyncrasies
 ‣ continuous analysis from the beginning of the gestures
Gesture?

- Any continuous datastream of parameters
 - typically 0.1 to 1000 Hz
- from motion capture systems:
 - image descriptors
 - accelerometers, gyroscope, magnetometers
- from sound descriptors
 - pitch, loudness
 - mfccs, ...
- multimodal data
Time Profile Modeling: HMM

Markov Models

Probability density function

Sensor value

Transition probabilities

Markov Chains
HMM structures

one state every two samples

maximum relative speed = 2

one state every sample

maximum relative speed = 2
Hybrid Approach

• Hybrid between:
 ‣ Template based - Dynamic Time Warping
 ‣ Linear Dynamics Model
 ‣ HMM

• Similar to S. Rajko et al. (ASU), also developed in an artistic context
Real-time time warping

- Synchronization/following
- Recognition
- Anticipation (prediction)
Time warping

references

time warped performed gesture

x

acceleration

y

time

z
Learning phase

- Transition matrix
 - left-to-right Markov chain
 - states regularly spaced in time
 ⇒ transition matrix set by the sampling rate
 ⇒ direct relationship between state number i and time
 ($T = 1/1-a$, where a is the self transition prob)

- Emission probabilities
 \[e^{-\left(\frac{x_i - \mu_i}{\sigma_i}\right)^2} \]
 values from the time profile
 calculated or set by user
Forward Calculation

State probability for given observation $O(t_n) = b$

Transition Matrix

$$\alpha(t_{n+1}) = A[\alpha(t_n) \cdot b]$$

state probability at $t = t_{n+1}$
Decoding phase

- Using the *forward computation* [Rabiner 89] (causal !)
- Compute the probability α of being at state i
Decoding phase

State with maximum probability at time t

\Rightarrow time progression

$\sum \alpha_i = \text{likelihood at time } t$
Evaluation with synthesized signals

- Test signal
- Reference signal

Graphs showing mean error (sample #) against:
- Scaling
- Offset
- Noise
Following long sequences

Computation of α on a sliding window
Gesture Follower - Context

dance
(performance and installation)

music pedagogy

music performance
StreicherKreis - Florence Baschet

gesture” =
acceleration
angular velocity
pressure
audio energy
Synchronizing Sound to Gesture
Music Pedagogy applications

• Conducting

Atelier des Feuillantes Fabrice Guédy
Homo Ludens (Richard Siegal - The Bakery)
Recognizing movement qualities

Sarah Fdili Alaoui (PhD work)
Collaboration with the dance company Emio Greco I PC
Towards Segmental Models

Goal: classification / segmentation of sounds and gestures based on their temporal evolutions

Approach: segmental HMM models

“classical” HMM steps

Gesture Follower steps

segmental HMM trajectories
Sound and gesture morphologies

classification/segmentation on a violin database
(pitch/loudness profiles)

Modelling by primitive assembling:

Segmentation on a continuous stream:

Hierarchical / Two-level Modeling

1. Temporal Segments
 - Temporal

2. Sequence of Segments
Credits and Acknowledgements

- Real Time Musical Interaction team:
 Frédéric Bevilacqua, Tommaso Bianco, Julien Bloit, Riccardo Borghesi, Baptiste Caramiaux, Arshia Cont, Arnaud Dessein, Sarah Fdili Alaoui, Emmanuel Fléty, Vassilios-Fivos Maniatakos, Norbert Schnell, Diemo Schwarz, Fabrice Guédy, Alain Bonardi, Nicolas Rasamimanana, Bruno Zamborlin

- Current Support of the projects:
 - ANR projects: Interlude, Topophonie (France).
 - EU-ICT Project SAME

- Thanks to
 Atelier les Feuillantines and students, Remy Muller, Jean-Philippe Lambert, Alice Daquet, Anthony Sypniewski, Donald Glowinski, Bertha Bermudez and EG|PC, Myriam Gourfink, Richard Siegal, Hillary Goidell, Florent Berenger, Florence Baschet